Cargando…
Self-Propelled Micromotors for Cleaning Polluted Water
[Image: see text] We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors co...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2013
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3872448/ https://www.ncbi.nlm.nih.gov/pubmed/24180623 http://dx.doi.org/10.1021/nn405075d |
_version_ | 1782296973779402752 |
---|---|
author | Soler, Lluís Magdanz, Veronika Fomin, Vladimir M. Sanchez, Samuel Schmidt, Oliver G. |
author_facet | Soler, Lluís Magdanz, Veronika Fomin, Vladimir M. Sanchez, Samuel Schmidt, Oliver G. |
author_sort | Soler, Lluís |
collection | PubMed |
description | [Image: see text] We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction–diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water. |
format | Online Article Text |
id | pubmed-3872448 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-38724482013-12-28 Self-Propelled Micromotors for Cleaning Polluted Water Soler, Lluís Magdanz, Veronika Fomin, Vladimir M. Sanchez, Samuel Schmidt, Oliver G. ACS Nano [Image: see text] We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction–diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water. American Chemical Society 2013-11-01 2013-11-26 /pmc/articles/PMC3872448/ /pubmed/24180623 http://dx.doi.org/10.1021/nn405075d Text en Copyright © 2013 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) |
spellingShingle | Soler, Lluís Magdanz, Veronika Fomin, Vladimir M. Sanchez, Samuel Schmidt, Oliver G. Self-Propelled Micromotors for Cleaning Polluted Water |
title | Self-Propelled Micromotors for Cleaning Polluted Water |
title_full | Self-Propelled Micromotors for Cleaning Polluted Water |
title_fullStr | Self-Propelled Micromotors for Cleaning Polluted Water |
title_full_unstemmed | Self-Propelled Micromotors for Cleaning Polluted Water |
title_short | Self-Propelled Micromotors for Cleaning Polluted Water |
title_sort | self-propelled micromotors for cleaning polluted water |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3872448/ https://www.ncbi.nlm.nih.gov/pubmed/24180623 http://dx.doi.org/10.1021/nn405075d |
work_keys_str_mv | AT solerlluis selfpropelledmicromotorsforcleaningpollutedwater AT magdanzveronika selfpropelledmicromotorsforcleaningpollutedwater AT fominvladimirm selfpropelledmicromotorsforcleaningpollutedwater AT sanchezsamuel selfpropelledmicromotorsforcleaningpollutedwater AT schmidtoliverg selfpropelledmicromotorsforcleaningpollutedwater |