Cargando…
The Invasive Plant Alternanthera philoxeroides Was Suppressed More Intensively than Its Native Congener by a Native Generalist: Implications for the Biotic Resistance Hypothesis
Prior studies on preferences of native herbivores for native or exotic plants have tested both the enemy release hypothesis and the biotic resistance hypothesis and have reported inconsistent results. The different levels of resistance of native and exotic plants to native herbivores could resolve t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873342/ https://www.ncbi.nlm.nih.gov/pubmed/24386236 http://dx.doi.org/10.1371/journal.pone.0083619 |
_version_ | 1782297096960868352 |
---|---|
author | Fan, Shufeng Yu, Dan Liu, Chunhua |
author_facet | Fan, Shufeng Yu, Dan Liu, Chunhua |
author_sort | Fan, Shufeng |
collection | PubMed |
description | Prior studies on preferences of native herbivores for native or exotic plants have tested both the enemy release hypothesis and the biotic resistance hypothesis and have reported inconsistent results. The different levels of resistance of native and exotic plants to native herbivores could resolve this controversy, but little attention has been paid to this issue. In this study, we investigated population performance, photosynthesis, leaf nitrogen concentration, and the constitutive and induced resistances of the successful invasive plant, Alternanthera philoxeroides, and its native congener, Alternanthera sessilis, in the presence of three population densities of the grasshopper, Atractomorpha sinensis. When the grasshopper was absent, leaf biomass, total biomass, photosynthesis, and leaf nitrogen concentration of A. philoxeroides were higher than those of A. sessilis. However, the morphological and physiological performances of A. philoxeroides were all decreased more intensively than A. sessilis after herbivory by grasshoppers. Especially as the concentrations of constitutive lignin and cellulose in leaf of A. philoxeroides were higher than A. sessilis, A. philoxeroides exhibited increased leaf lignin concentration to reduce its palatability only at severe herbivore load, whereas, leaf lignin, cellulose, and polyphenolic concentrations of A. sessilis all increased with increasing herbivory pressure, and cellulose and polyphenolic concentrations were higher in A. sessilis than in A. philoxeroides after herbivory. Our study indicated that the capability of the invasive plant to respond to native insect damage was lower than the native plant, and the invasive plant was suppressed more intensively than its native congener by the native insect. Our results support the biotic resistance hypothesis and suggest that native herbivores can constrain the abundance and reduce the adverse effects of invasive species. |
format | Online Article Text |
id | pubmed-3873342 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38733422014-01-02 The Invasive Plant Alternanthera philoxeroides Was Suppressed More Intensively than Its Native Congener by a Native Generalist: Implications for the Biotic Resistance Hypothesis Fan, Shufeng Yu, Dan Liu, Chunhua PLoS One Research Article Prior studies on preferences of native herbivores for native or exotic plants have tested both the enemy release hypothesis and the biotic resistance hypothesis and have reported inconsistent results. The different levels of resistance of native and exotic plants to native herbivores could resolve this controversy, but little attention has been paid to this issue. In this study, we investigated population performance, photosynthesis, leaf nitrogen concentration, and the constitutive and induced resistances of the successful invasive plant, Alternanthera philoxeroides, and its native congener, Alternanthera sessilis, in the presence of three population densities of the grasshopper, Atractomorpha sinensis. When the grasshopper was absent, leaf biomass, total biomass, photosynthesis, and leaf nitrogen concentration of A. philoxeroides were higher than those of A. sessilis. However, the morphological and physiological performances of A. philoxeroides were all decreased more intensively than A. sessilis after herbivory by grasshoppers. Especially as the concentrations of constitutive lignin and cellulose in leaf of A. philoxeroides were higher than A. sessilis, A. philoxeroides exhibited increased leaf lignin concentration to reduce its palatability only at severe herbivore load, whereas, leaf lignin, cellulose, and polyphenolic concentrations of A. sessilis all increased with increasing herbivory pressure, and cellulose and polyphenolic concentrations were higher in A. sessilis than in A. philoxeroides after herbivory. Our study indicated that the capability of the invasive plant to respond to native insect damage was lower than the native plant, and the invasive plant was suppressed more intensively than its native congener by the native insect. Our results support the biotic resistance hypothesis and suggest that native herbivores can constrain the abundance and reduce the adverse effects of invasive species. Public Library of Science 2013-12-26 /pmc/articles/PMC3873342/ /pubmed/24386236 http://dx.doi.org/10.1371/journal.pone.0083619 Text en © 2013 Fan et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Fan, Shufeng Yu, Dan Liu, Chunhua The Invasive Plant Alternanthera philoxeroides Was Suppressed More Intensively than Its Native Congener by a Native Generalist: Implications for the Biotic Resistance Hypothesis |
title | The Invasive Plant Alternanthera philoxeroides Was Suppressed More Intensively than Its Native Congener by a Native Generalist: Implications for the Biotic Resistance Hypothesis |
title_full | The Invasive Plant Alternanthera philoxeroides Was Suppressed More Intensively than Its Native Congener by a Native Generalist: Implications for the Biotic Resistance Hypothesis |
title_fullStr | The Invasive Plant Alternanthera philoxeroides Was Suppressed More Intensively than Its Native Congener by a Native Generalist: Implications for the Biotic Resistance Hypothesis |
title_full_unstemmed | The Invasive Plant Alternanthera philoxeroides Was Suppressed More Intensively than Its Native Congener by a Native Generalist: Implications for the Biotic Resistance Hypothesis |
title_short | The Invasive Plant Alternanthera philoxeroides Was Suppressed More Intensively than Its Native Congener by a Native Generalist: Implications for the Biotic Resistance Hypothesis |
title_sort | invasive plant alternanthera philoxeroides was suppressed more intensively than its native congener by a native generalist: implications for the biotic resistance hypothesis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873342/ https://www.ncbi.nlm.nih.gov/pubmed/24386236 http://dx.doi.org/10.1371/journal.pone.0083619 |
work_keys_str_mv | AT fanshufeng theinvasiveplantalternantheraphiloxeroideswassuppressedmoreintensivelythanitsnativecongenerbyanativegeneralistimplicationsforthebioticresistancehypothesis AT yudan theinvasiveplantalternantheraphiloxeroideswassuppressedmoreintensivelythanitsnativecongenerbyanativegeneralistimplicationsforthebioticresistancehypothesis AT liuchunhua theinvasiveplantalternantheraphiloxeroideswassuppressedmoreintensivelythanitsnativecongenerbyanativegeneralistimplicationsforthebioticresistancehypothesis AT fanshufeng invasiveplantalternantheraphiloxeroideswassuppressedmoreintensivelythanitsnativecongenerbyanativegeneralistimplicationsforthebioticresistancehypothesis AT yudan invasiveplantalternantheraphiloxeroideswassuppressedmoreintensivelythanitsnativecongenerbyanativegeneralistimplicationsforthebioticresistancehypothesis AT liuchunhua invasiveplantalternantheraphiloxeroideswassuppressedmoreintensivelythanitsnativecongenerbyanativegeneralistimplicationsforthebioticresistancehypothesis |