Cargando…

Preliminary Results of the in Vivo and in Vitro Characterization of a Tentacle Venom Fraction from the Jellyfish Aurelia aurita

The neurotoxic effects produced by a tentacle venom extract and a fraction were analyzed and correlated by in vivo and in vitro approaches. The tentacle venom extract exhibited a wide range of protein components (from 24 to >225 kDa) and produced tetanic reactions, flaccid paralysis, and death wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Ponce, Dalia, López-Vera, Estuardo, Aguilar, Manuel B., Sánchez-Rodríguez, Judith
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873694/
https://www.ncbi.nlm.nih.gov/pubmed/24322597
http://dx.doi.org/10.3390/toxins5122420
Descripción
Sumario:The neurotoxic effects produced by a tentacle venom extract and a fraction were analyzed and correlated by in vivo and in vitro approaches. The tentacle venom extract exhibited a wide range of protein components (from 24 to >225 kDa) and produced tetanic reactions, flaccid paralysis, and death when injected into crabs. Two chromatography fractions also produced uncontrolled appendix movements and leg stretching. Further electrophysiological characterization demonstrated that one of these fractions potently inhibited ACh-elicited currents mediated by both vertebrate fetal and adult muscle nicotinic acetylcholine receptors (nAChR) subtypes. Receptor inhibition was concentration-dependent and completely reversible. The calculated IC(50) values were 1.77 μg/μL for fetal and 2.28 μg/μL for adult muscle nAChRs. The bioactive fraction was composed of a major protein component at ~90 kDa and lacked phospholipase A activity. This work represents the first insight into the interaction of jellyfish venom components and muscle nicotinic receptors.