Cargando…

The Role of Body Surface Area in Quantity Discrimination in Angelfish (Pterophyllum scalare)

Although some fish species have been shown to be able to discriminate between two groups (shoals) of conspecifics differing in the number of members, most studies have not controlled for continuous variables that covary with number. Previously, using angelfish (Pterophyllum scalare) we started the s...

Descripción completa

Detalles Bibliográficos
Autores principales: Gómez-Laplaza, Luis M., Gerlai, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873975/
https://www.ncbi.nlm.nih.gov/pubmed/24386299
http://dx.doi.org/10.1371/journal.pone.0083880
Descripción
Sumario:Although some fish species have been shown to be able to discriminate between two groups (shoals) of conspecifics differing in the number of members, most studies have not controlled for continuous variables that covary with number. Previously, using angelfish (Pterophyllum scalare) we started the systematic analysis of the potential influence of such continuous variables, and found that they play different roles in shoal discrimination depending on whether large (≥4 fish) or small (<4 fish) shoals were contrasted. Here, we examine the potential role of the overall body surface area of stimulus fish in shoal preference, a prominent variable not yet examined in angelfish. We report that both when numerically large (5 versus 10 fish) and when small (2 versus 3 fish) shoals were contrasted, angelfish were unable to discriminate the numerically different shoals as long as the surface area of the contrasted shoals was equated. Thus, we conclude that body surface may be an important continuous variable in shoal discrimination. This conclusion was further supported by the analysis of preference when shoals of the same numerical size but different body surface area were contrasted. We found subjects to spend significantly more time close to the shoals with the greater overall surface area. Last, we conducted an experiment in which we simultaneously controlled a set of continuous variables, including overall surface area, and found angelfish to use the number of shoal members as a cue only in large shoal contrasts but not in small shoal contrasts. This result suggests the potential existence of different processing systems for large and small numbers in fish.