Cargando…

De novo prediction of DNA-binding specificities for Cys(2)His(2) zinc finger proteins

Proteins with sequence-specific DNA binding function are important for a wide range of biological activities. De novo prediction of their DNA-binding specificities from sequence alone would be a great aid in inferring cellular networks. Here we introduce a method for predicting DNA-binding specifici...

Descripción completa

Detalles Bibliográficos
Autores principales: Persikov, Anton V., Singh, Mona
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874201/
https://www.ncbi.nlm.nih.gov/pubmed/24097433
http://dx.doi.org/10.1093/nar/gkt890
Descripción
Sumario:Proteins with sequence-specific DNA binding function are important for a wide range of biological activities. De novo prediction of their DNA-binding specificities from sequence alone would be a great aid in inferring cellular networks. Here we introduce a method for predicting DNA-binding specificities for Cys(2)His(2) zinc fingers (C2H2-ZFs), the largest family of DNA-binding proteins in metazoans. We develop a general approach, based on empirical calculations of pairwise amino acid–nucleotide interaction energies, for predicting position weight matrices (PWMs) representing DNA-binding specificities for C2H2-ZF proteins. We predict DNA-binding specificities on a per-finger basis and merge predictions for C2H2-ZF domains that are arrayed within sequences. We test our approach on a diverse set of natural C2H2-ZF proteins with known binding specificities and demonstrate that for >85% of the proteins, their predicted PWMs are accurate in 50% of their nucleotide positions. For proteins with several zinc finger isoforms, we show via case studies that this level of accuracy enables us to match isoforms with their known DNA-binding specificities. A web server for predicting a PWM given a protein containing C2H2-ZF domains is available online at http://zf.princeton.edu and can be used to aid in protein engineering applications and in genome-wide searches for transcription factor targets.