Cargando…

Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector mac...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernandez-Lozano, C., Canto, C., Gestal, M., Andrade-Garda, J. M., Rabuñal, J. R., Dorado, J., Pazos, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874306/
https://www.ncbi.nlm.nih.gov/pubmed/24453933
http://dx.doi.org/10.1155/2013/982438
Descripción
Sumario:Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected.