Cargando…

Culture conditions for equine bone marrow mesenchymal stem cells and expression of key transcription factors during their differentiation into osteoblasts

BACKGROUND: The use of equine bone marrow mesenchymal stem cells (BMSC) is a novel method to improve fracture healing in horses. However, additional research is needed to identify optimal culture conditions and to determine the mechanisms involved in regulating BMSC differentiation into osteoblasts....

Descripción completa

Detalles Bibliográficos
Autores principales: Glynn, Elizabeth R A, Londono, Alfredo Sanchez, Zinn, Steven A, Hoagland, Thomas A, Govoni, Kristen E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874597/
https://www.ncbi.nlm.nih.gov/pubmed/24169030
http://dx.doi.org/10.1186/2049-1891-4-40
Descripción
Sumario:BACKGROUND: The use of equine bone marrow mesenchymal stem cells (BMSC) is a novel method to improve fracture healing in horses. However, additional research is needed to identify optimal culture conditions and to determine the mechanisms involved in regulating BMSC differentiation into osteoblasts. The objectives of the experiments were to determine: 1) if autologous or commercial serum is better for proliferation and differentiation of equine BMSC into osteoblasts, and 2) the expression of key transcription factors during the differentiation of equine BMSC into osteoblasts. Equine BMSC were isolated from the sterna of 3 horses, treated with purchased fetal bovine serum (FBS) or autologous horse serum (HS), and cell proliferation determined. To induce osteoblast differentiation, cells were incubated with L-ascorbic acid-2-phosphate and glycerol-2-phosphate in the presence or absence of human bone morphogenetic protein2 (BMP2), dexamethasone (DEX), or combination of the two. Alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was determined by ELISA. Total RNA was isolated from differentiating BMSC between d 0 to 18 to determine expression of runt-related transcription factor2 (Runx2), osterix (Osx), and T-box3 (Tbx3). Data were analyzed by ANOVA. RESULTS: Relative to control, FBS and HS increased cell number (133 ± 5 and 116 ± 5%, respectively; P < 0.001) and 5-bromo-2'-deoxyuridine (BrdU) incorporation (167 ± 6 and 120 ± 6%, respectively; P < 0.001). Treatment with DEX increased ALP activity compared with control (1,638 ± 38%; P < 0.001). In the absence and presence of Dex, BMP-2 did not alter ALP activity (P > 0.8). Runt-related transcription factor2 expression increased 3-fold (P < 0.001) by d 6 of culture. Osterix expression increased 9-fold (P < 0.05) by d 18 of culture. Expression of Tbx3 increased 1.8-fold at d 3 (P < 0.01); however expression was reduced 4-fold at d 18 (P < 0.01). CONCLUSIONS: Dexamethasone, but not BMP-2, is required for differentiation of equine BMSC into osteoblasts. In addition, expression of Runx2 and osterix increased and expression of Tbx3 is reduced during differentiation.