Cargando…

Whole genome sequencing and de novo assembly identifies Sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in England

BACKGROUND: Norovirus is the commonest cause of epidemic gastroenteritis among people of all ages. Outbreaks frequently occur in hospitals and the community, costing the UK an estimated £110 m per annum. An evolutionary explanation for periodic increases in norovirus cases, despite some host-specifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wong, T H Nicholas, Dearlove, Bethany L, Hedge, Jessica, Giess, Adam P, Piazza, Paolo, Trebes, Amy, Paul, John, Smit, Erasmus, Smith, E Grace, Sutton, Julian K, Wilcox, Mark H, Dingle, Kate E, Peto, Tim E A, Crook, Derrick W, Wilson, Daniel J, Wyllie, David H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874643/
https://www.ncbi.nlm.nih.gov/pubmed/24220146
http://dx.doi.org/10.1186/1743-422X-10-335
_version_ 1782297254681378816
author Wong, T H Nicholas
Dearlove, Bethany L
Hedge, Jessica
Giess, Adam P
Piazza, Paolo
Trebes, Amy
Paul, John
Smit, Erasmus
Smith, E Grace
Sutton, Julian K
Wilcox, Mark H
Dingle, Kate E
Peto, Tim E A
Crook, Derrick W
Wilson, Daniel J
Wyllie, David H
author_facet Wong, T H Nicholas
Dearlove, Bethany L
Hedge, Jessica
Giess, Adam P
Piazza, Paolo
Trebes, Amy
Paul, John
Smit, Erasmus
Smith, E Grace
Sutton, Julian K
Wilcox, Mark H
Dingle, Kate E
Peto, Tim E A
Crook, Derrick W
Wilson, Daniel J
Wyllie, David H
author_sort Wong, T H Nicholas
collection PubMed
description BACKGROUND: Norovirus is the commonest cause of epidemic gastroenteritis among people of all ages. Outbreaks frequently occur in hospitals and the community, costing the UK an estimated £110 m per annum. An evolutionary explanation for periodic increases in norovirus cases, despite some host-specific post immunity is currently limited to the identification of obvious recombinants. Our understanding could be significantly enhanced by full length genome sequences for large numbers of intensively sampled viruses, which would also assist control and vaccine design. Our objective is to develop rapid, high-throughput, end-to-end methods yielding complete norovirus genome sequences. We apply these methods to recent English outbreaks, placing them in the wider context of the international norovirus epidemic of winter 2012. METHOD: Norovirus sequences were generated from 28 unique clinical samples by Illumina RNA sequencing (RNA-Seq) of total faecal RNA. A range of de novo sequence assemblers were attempted. The best assembler was identified by validation against three replicate samples and two norovirus qPCR negative samples, together with an additional 20 sequences determined by PCR and fractional capillary sequencing. Phylogenetic methods were used to reconstruct evolutionary relationships from the whole genome sequences. RESULTS: Full length norovirus genomes were generated from 23/28 samples. 5/28 partial norovirus genomes were associated with low viral copy numbers. The de novo assembled sequences differed from sequences determined by capillary sequencing by <0.003%. Intra-host nucleotide sequence diversity was rare, but detectable by mapping short sequence reads onto its de novo assembled consensus. Genomes similar to the Sydney 2012 strain caused 78% (18/23) of cases, consistent with its previously documented association with the winter 2012 global outbreak. Interestingly, phylogenetic analysis and recombination detection analysis of the consensus sequences identified two related viruses as recombinants, containing sequences in prior circulation to Sydney 2012 in open reading frame (ORF) 2. CONCLUSION: Our approach facilitates the rapid determination of complete norovirus genomes. This method provides high resolution of full norovirus genomes which, when coupled with detailed epidemiology, may improve the understanding of evolution and control of this important healthcare-associated pathogen.
format Online
Article
Text
id pubmed-3874643
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-38746432013-12-31 Whole genome sequencing and de novo assembly identifies Sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in England Wong, T H Nicholas Dearlove, Bethany L Hedge, Jessica Giess, Adam P Piazza, Paolo Trebes, Amy Paul, John Smit, Erasmus Smith, E Grace Sutton, Julian K Wilcox, Mark H Dingle, Kate E Peto, Tim E A Crook, Derrick W Wilson, Daniel J Wyllie, David H Virol J Research BACKGROUND: Norovirus is the commonest cause of epidemic gastroenteritis among people of all ages. Outbreaks frequently occur in hospitals and the community, costing the UK an estimated £110 m per annum. An evolutionary explanation for periodic increases in norovirus cases, despite some host-specific post immunity is currently limited to the identification of obvious recombinants. Our understanding could be significantly enhanced by full length genome sequences for large numbers of intensively sampled viruses, which would also assist control and vaccine design. Our objective is to develop rapid, high-throughput, end-to-end methods yielding complete norovirus genome sequences. We apply these methods to recent English outbreaks, placing them in the wider context of the international norovirus epidemic of winter 2012. METHOD: Norovirus sequences were generated from 28 unique clinical samples by Illumina RNA sequencing (RNA-Seq) of total faecal RNA. A range of de novo sequence assemblers were attempted. The best assembler was identified by validation against three replicate samples and two norovirus qPCR negative samples, together with an additional 20 sequences determined by PCR and fractional capillary sequencing. Phylogenetic methods were used to reconstruct evolutionary relationships from the whole genome sequences. RESULTS: Full length norovirus genomes were generated from 23/28 samples. 5/28 partial norovirus genomes were associated with low viral copy numbers. The de novo assembled sequences differed from sequences determined by capillary sequencing by <0.003%. Intra-host nucleotide sequence diversity was rare, but detectable by mapping short sequence reads onto its de novo assembled consensus. Genomes similar to the Sydney 2012 strain caused 78% (18/23) of cases, consistent with its previously documented association with the winter 2012 global outbreak. Interestingly, phylogenetic analysis and recombination detection analysis of the consensus sequences identified two related viruses as recombinants, containing sequences in prior circulation to Sydney 2012 in open reading frame (ORF) 2. CONCLUSION: Our approach facilitates the rapid determination of complete norovirus genomes. This method provides high resolution of full norovirus genomes which, when coupled with detailed epidemiology, may improve the understanding of evolution and control of this important healthcare-associated pathogen. BioMed Central 2013-11-13 /pmc/articles/PMC3874643/ /pubmed/24220146 http://dx.doi.org/10.1186/1743-422X-10-335 Text en Copyright © 2013 Wong et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Wong, T H Nicholas
Dearlove, Bethany L
Hedge, Jessica
Giess, Adam P
Piazza, Paolo
Trebes, Amy
Paul, John
Smit, Erasmus
Smith, E Grace
Sutton, Julian K
Wilcox, Mark H
Dingle, Kate E
Peto, Tim E A
Crook, Derrick W
Wilson, Daniel J
Wyllie, David H
Whole genome sequencing and de novo assembly identifies Sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in England
title Whole genome sequencing and de novo assembly identifies Sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in England
title_full Whole genome sequencing and de novo assembly identifies Sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in England
title_fullStr Whole genome sequencing and de novo assembly identifies Sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in England
title_full_unstemmed Whole genome sequencing and de novo assembly identifies Sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in England
title_short Whole genome sequencing and de novo assembly identifies Sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in England
title_sort whole genome sequencing and de novo assembly identifies sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in england
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874643/
https://www.ncbi.nlm.nih.gov/pubmed/24220146
http://dx.doi.org/10.1186/1743-422X-10-335
work_keys_str_mv AT wongthnicholas wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland
AT dearlovebethanyl wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland
AT hedgejessica wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland
AT giessadamp wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland
AT piazzapaolo wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland
AT trebesamy wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland
AT pauljohn wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland
AT smiterasmus wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland
AT smithegrace wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland
AT suttonjuliank wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland
AT wilcoxmarkh wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland
AT dinglekatee wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland
AT petotimea wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland
AT crookderrickw wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland
AT wilsondanielj wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland
AT wylliedavidh wholegenomesequencinganddenovoassemblyidentifiessydneylikevariantnorovirusesandrecombinantsduringthewinter20122013outbreakinengland