Cargando…

Amino acid digestibility of heat damaged distillers dried grains with solubles fed to pigs

The primary objective of this experiment was to determine the effects of heat treatment on the standardized ileal digestibility (SID) of amino acids (AA) in corn distillers dried grains with solubles (DDGS) fed to growing pigs. The second objective was to develop regression equations that may be use...

Descripción completa

Detalles Bibliográficos
Autores principales: Almeida, Ferdinando Nielsen, Htoo, John Kyaw, Thomson, John, Stein, Hans Henrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874649/
https://www.ncbi.nlm.nih.gov/pubmed/24229436
http://dx.doi.org/10.1186/2049-1891-4-44
Descripción
Sumario:The primary objective of this experiment was to determine the effects of heat treatment on the standardized ileal digestibility (SID) of amino acids (AA) in corn distillers dried grains with solubles (DDGS) fed to growing pigs. The second objective was to develop regression equations that may be used to predict the concentration of SID AA in corn DDGS. A source of corn DDGS was divided into 4 batches that were either not autoclaved or autoclaved at 130°C for 10, 20, or 30 min. Four diets containing DDGS from each of the 4 batches were formulated with DDGS being the only source of AA and CP in the diets. A N-free diet also was formulated and used to determine the basal endogenous losses of CP and AA. Ten growing pigs (initial BW: 53.5 ± 3.9 kg) were surgically equipped with a T-cannula in the distal ileum and allotted to a replicated 5 × 4 Youden square design with 5 diets and 4 periods in each square. The SID of CP decreased linearly (P < 0.05) from 77.9% in non-autoclaved DDGS to 72.1, 66.1, and 68.5% in the DDGS samples that were autoclaved for 10, 20, or 30 min, respectively. The SID of lysine was quadratically reduced (P < 0.05) from 66.8% in the non-autoclaved DDGS to 54.9, 55.3, and 51.9% in the DDGS autoclaved for 10, 20, or 30 min, respectively. The concentrations of SID Arginine, Histidine, Leucine, Lysine, Methionine, Phenylalanine, or Threonine may be best predicted by equations that include the concentration of acid detergent insoluble N in the model (r(2) = 0.76, 0.68, 0.67, 0.84, 0.76, 0.73, or 0.54, respectively). The concentrations of SID Isoleucine and Valine were predicted (r(2) = 0.58 and 0.54, respectively) by the Lysine:CP ratio, whereas the concentration of SID Tryptophan was predicted (r(2) = 0.70) by the analyzed concentration of Tryptophan in DDGS. In conclusion, the SID of AA is decreased as a result of heat damage and the concentration of SID AA in heat-damaged DDGS may be predicted by regression equations developed in this experiment.