Cargando…
A midas plugin to enable construction of reproducible web-based image processing pipelines
Image processing is an important quantitative technique for neuroscience researchers, but difficult for those who lack experience in the field. In this paper we present a web-based platform that allows an expert to create a brain image processing pipeline, enabling execution of that pipeline even by...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875239/ https://www.ncbi.nlm.nih.gov/pubmed/24416016 http://dx.doi.org/10.3389/fninf.2013.00046 |
_version_ | 1782297335893590016 |
---|---|
author | Grauer, Michael Reynolds, Patrick Hoogstoel, Marion Budin, Francois Styner, Martin A. Oguz, Ipek |
author_facet | Grauer, Michael Reynolds, Patrick Hoogstoel, Marion Budin, Francois Styner, Martin A. Oguz, Ipek |
author_sort | Grauer, Michael |
collection | PubMed |
description | Image processing is an important quantitative technique for neuroscience researchers, but difficult for those who lack experience in the field. In this paper we present a web-based platform that allows an expert to create a brain image processing pipeline, enabling execution of that pipeline even by those biomedical researchers with limited image processing knowledge. These tools are implemented as a plugin for Midas, an open-source toolkit for creating web based scientific data storage and processing platforms. Using this plugin, an image processing expert can construct a pipeline, create a web-based User Interface, manage jobs, and visualize intermediate results. Pipelines are executed on a grid computing platform using BatchMake and HTCondor. This represents a new capability for biomedical researchers and offers an innovative platform for scientific collaboration. Current tools work well, but can be inaccessible for those lacking image processing expertise. Using this plugin, researchers in collaboration with image processing experts can create workflows with reasonable default settings and streamlined user interfaces, and data can be processed easily from a lab environment without the need for a powerful desktop computer. This platform allows simplified troubleshooting, centralized maintenance, and easy data sharing with collaborators. These capabilities enable reproducible science by sharing datasets and processing pipelines between collaborators. In this paper, we present a description of this innovative Midas plugin, along with results obtained from building and executing several ITK based image processing workflows for diffusion weighted MRI (DW MRI) of rodent brain images, as well as recommendations for building automated image processing pipelines. Although the particular image processing pipelines developed were focused on rodent brain MRI, the presented plugin can be used to support any executable or script-based pipeline. |
format | Online Article Text |
id | pubmed-3875239 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-38752392014-01-11 A midas plugin to enable construction of reproducible web-based image processing pipelines Grauer, Michael Reynolds, Patrick Hoogstoel, Marion Budin, Francois Styner, Martin A. Oguz, Ipek Front Neuroinform Neuroscience Image processing is an important quantitative technique for neuroscience researchers, but difficult for those who lack experience in the field. In this paper we present a web-based platform that allows an expert to create a brain image processing pipeline, enabling execution of that pipeline even by those biomedical researchers with limited image processing knowledge. These tools are implemented as a plugin for Midas, an open-source toolkit for creating web based scientific data storage and processing platforms. Using this plugin, an image processing expert can construct a pipeline, create a web-based User Interface, manage jobs, and visualize intermediate results. Pipelines are executed on a grid computing platform using BatchMake and HTCondor. This represents a new capability for biomedical researchers and offers an innovative platform for scientific collaboration. Current tools work well, but can be inaccessible for those lacking image processing expertise. Using this plugin, researchers in collaboration with image processing experts can create workflows with reasonable default settings and streamlined user interfaces, and data can be processed easily from a lab environment without the need for a powerful desktop computer. This platform allows simplified troubleshooting, centralized maintenance, and easy data sharing with collaborators. These capabilities enable reproducible science by sharing datasets and processing pipelines between collaborators. In this paper, we present a description of this innovative Midas plugin, along with results obtained from building and executing several ITK based image processing workflows for diffusion weighted MRI (DW MRI) of rodent brain images, as well as recommendations for building automated image processing pipelines. Although the particular image processing pipelines developed were focused on rodent brain MRI, the presented plugin can be used to support any executable or script-based pipeline. Frontiers Media S.A. 2013-12-30 /pmc/articles/PMC3875239/ /pubmed/24416016 http://dx.doi.org/10.3389/fninf.2013.00046 Text en Copyright © 2013 Grauer, Reynolds, Hoogstoel, Budin, Styner and Oguz. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Grauer, Michael Reynolds, Patrick Hoogstoel, Marion Budin, Francois Styner, Martin A. Oguz, Ipek A midas plugin to enable construction of reproducible web-based image processing pipelines |
title | A midas plugin to enable construction of reproducible web-based image processing pipelines |
title_full | A midas plugin to enable construction of reproducible web-based image processing pipelines |
title_fullStr | A midas plugin to enable construction of reproducible web-based image processing pipelines |
title_full_unstemmed | A midas plugin to enable construction of reproducible web-based image processing pipelines |
title_short | A midas plugin to enable construction of reproducible web-based image processing pipelines |
title_sort | midas plugin to enable construction of reproducible web-based image processing pipelines |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875239/ https://www.ncbi.nlm.nih.gov/pubmed/24416016 http://dx.doi.org/10.3389/fninf.2013.00046 |
work_keys_str_mv | AT grauermichael amidasplugintoenableconstructionofreproduciblewebbasedimageprocessingpipelines AT reynoldspatrick amidasplugintoenableconstructionofreproduciblewebbasedimageprocessingpipelines AT hoogstoelmarion amidasplugintoenableconstructionofreproduciblewebbasedimageprocessingpipelines AT budinfrancois amidasplugintoenableconstructionofreproduciblewebbasedimageprocessingpipelines AT stynermartina amidasplugintoenableconstructionofreproduciblewebbasedimageprocessingpipelines AT oguzipek amidasplugintoenableconstructionofreproduciblewebbasedimageprocessingpipelines AT grauermichael midasplugintoenableconstructionofreproduciblewebbasedimageprocessingpipelines AT reynoldspatrick midasplugintoenableconstructionofreproduciblewebbasedimageprocessingpipelines AT hoogstoelmarion midasplugintoenableconstructionofreproduciblewebbasedimageprocessingpipelines AT budinfrancois midasplugintoenableconstructionofreproduciblewebbasedimageprocessingpipelines AT stynermartina midasplugintoenableconstructionofreproduciblewebbasedimageprocessingpipelines AT oguzipek midasplugintoenableconstructionofreproduciblewebbasedimageprocessingpipelines |