Cargando…
Transcriptome Analysis of Nodes and Buds from High and Low Tillering Switchgrass Inbred Lines
In the last two decades switchgrass has received increasing attention as a promising bioenergy feedstock. Biomass is the principal trait for improvement in switchgrass breeding programs and tillering is an important component of biomass yield. Switchgrass inbred lines derived from a single parent sh...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875486/ https://www.ncbi.nlm.nih.gov/pubmed/24386276 http://dx.doi.org/10.1371/journal.pone.0083772 |
_version_ | 1782297360505765888 |
---|---|
author | Wang, Yixing Zeng, Xin Peal, Lila Tang, Yuhong Wu, Yanqi Mahalingam, Ramamurthy |
author_facet | Wang, Yixing Zeng, Xin Peal, Lila Tang, Yuhong Wu, Yanqi Mahalingam, Ramamurthy |
author_sort | Wang, Yixing |
collection | PubMed |
description | In the last two decades switchgrass has received increasing attention as a promising bioenergy feedstock. Biomass is the principal trait for improvement in switchgrass breeding programs and tillering is an important component of biomass yield. Switchgrass inbred lines derived from a single parent showing vast variation in tiller number trait was used in this study. Axillary buds, which can develop into tillers, and node tissues, which give rise to axillary buds, were collected from high and low tillering inbred lines growing in field conditions. RNA from buds and nodes from the contrasting inbred lines were used for transcriptome profiling with switchgrass Affymetrix genechips. Nearly 7% of the probesets on the genechip exhibited significant differential expression in these lines. Real-time PCR analysis of 30 genes confirmed the differential expression patterns observed with genechips. Cluster analysis aided in identifying probesets unique to high or low tillering lines as well as those specific to buds or nodes of high tillering lines. Rice orthologs of the switchgrass genes were used for gene ontology (GO) analysis with AgriGO. Enrichment of genes associated with amino acid biosynthesis, lipid transport and vesicular transport were observed in low tillering lines. Enrichment of GOs for translation, RNA binding and gene expression in high tillering lines were indicative of active metabolism associated with rapid growth and development. Identification of different classes of transcription factor genes suggests that regulation of many genes determines the complex process of axillary bud initiation and development. Genes identified in this study will complement the current ongoing efforts in quantitative trait loci mapping of tillering in switchgrass. |
format | Online Article Text |
id | pubmed-3875486 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38754862014-01-02 Transcriptome Analysis of Nodes and Buds from High and Low Tillering Switchgrass Inbred Lines Wang, Yixing Zeng, Xin Peal, Lila Tang, Yuhong Wu, Yanqi Mahalingam, Ramamurthy PLoS One Research Article In the last two decades switchgrass has received increasing attention as a promising bioenergy feedstock. Biomass is the principal trait for improvement in switchgrass breeding programs and tillering is an important component of biomass yield. Switchgrass inbred lines derived from a single parent showing vast variation in tiller number trait was used in this study. Axillary buds, which can develop into tillers, and node tissues, which give rise to axillary buds, were collected from high and low tillering inbred lines growing in field conditions. RNA from buds and nodes from the contrasting inbred lines were used for transcriptome profiling with switchgrass Affymetrix genechips. Nearly 7% of the probesets on the genechip exhibited significant differential expression in these lines. Real-time PCR analysis of 30 genes confirmed the differential expression patterns observed with genechips. Cluster analysis aided in identifying probesets unique to high or low tillering lines as well as those specific to buds or nodes of high tillering lines. Rice orthologs of the switchgrass genes were used for gene ontology (GO) analysis with AgriGO. Enrichment of genes associated with amino acid biosynthesis, lipid transport and vesicular transport were observed in low tillering lines. Enrichment of GOs for translation, RNA binding and gene expression in high tillering lines were indicative of active metabolism associated with rapid growth and development. Identification of different classes of transcription factor genes suggests that regulation of many genes determines the complex process of axillary bud initiation and development. Genes identified in this study will complement the current ongoing efforts in quantitative trait loci mapping of tillering in switchgrass. Public Library of Science 2013-12-30 /pmc/articles/PMC3875486/ /pubmed/24386276 http://dx.doi.org/10.1371/journal.pone.0083772 Text en © 2013 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Wang, Yixing Zeng, Xin Peal, Lila Tang, Yuhong Wu, Yanqi Mahalingam, Ramamurthy Transcriptome Analysis of Nodes and Buds from High and Low Tillering Switchgrass Inbred Lines |
title | Transcriptome Analysis of Nodes and Buds from High and Low Tillering Switchgrass Inbred Lines |
title_full | Transcriptome Analysis of Nodes and Buds from High and Low Tillering Switchgrass Inbred Lines |
title_fullStr | Transcriptome Analysis of Nodes and Buds from High and Low Tillering Switchgrass Inbred Lines |
title_full_unstemmed | Transcriptome Analysis of Nodes and Buds from High and Low Tillering Switchgrass Inbred Lines |
title_short | Transcriptome Analysis of Nodes and Buds from High and Low Tillering Switchgrass Inbred Lines |
title_sort | transcriptome analysis of nodes and buds from high and low tillering switchgrass inbred lines |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875486/ https://www.ncbi.nlm.nih.gov/pubmed/24386276 http://dx.doi.org/10.1371/journal.pone.0083772 |
work_keys_str_mv | AT wangyixing transcriptomeanalysisofnodesandbudsfromhighandlowtilleringswitchgrassinbredlines AT zengxin transcriptomeanalysisofnodesandbudsfromhighandlowtilleringswitchgrassinbredlines AT peallila transcriptomeanalysisofnodesandbudsfromhighandlowtilleringswitchgrassinbredlines AT tangyuhong transcriptomeanalysisofnodesandbudsfromhighandlowtilleringswitchgrassinbredlines AT wuyanqi transcriptomeanalysisofnodesandbudsfromhighandlowtilleringswitchgrassinbredlines AT mahalingamramamurthy transcriptomeanalysisofnodesandbudsfromhighandlowtilleringswitchgrassinbredlines |