Cargando…

Mutation in the pssA Gene Involved in Exopolysaccharide Synthesis Leads to Several Physiological and Symbiotic Defects in Rhizobium leguminosarum bv. trifolii

The symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum bv. trifolii 24.2 secretes large amounts of acidic exopolysaccharide (EPS), which plays a crucial role in establishment of effective symbiosis with clover. The biosynthesis of this heteropolymer is conducted by a multi-enzymatic complex...

Descripción completa

Detalles Bibliográficos
Autores principales: Janczarek, Monika, Rachwał, Kamila
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876073/
https://www.ncbi.nlm.nih.gov/pubmed/24317432
http://dx.doi.org/10.3390/ijms141223711
_version_ 1782297462960029696
author Janczarek, Monika
Rachwał, Kamila
author_facet Janczarek, Monika
Rachwał, Kamila
author_sort Janczarek, Monika
collection PubMed
description The symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum bv. trifolii 24.2 secretes large amounts of acidic exopolysaccharide (EPS), which plays a crucial role in establishment of effective symbiosis with clover. The biosynthesis of this heteropolymer is conducted by a multi-enzymatic complex located in the bacterial inner membrane. PssA protein, responsible for the addition of glucose-1-phosphate to a polyprenyl phosphate carrier, is involved in the first step of EPS synthesis. In this work, we characterize R. leguminosarum bv. trifolii strain Rt270 containing a mini-Tn5 transposon insertion located in the 3′-end of the pssA gene. It has been established that a mutation in this gene causes a pleiotropic effect in rhizobial cells. This is confirmed by the phenotype of the mutant strain Rt270, which exhibits several physiological and symbiotic defects such as a deficiency in EPS synthesis, decreased motility and utilization of some nutrients, decreased sensitivity to several antibiotics, an altered extracellular protein profile, and failed host plant infection. The data of this study indicate that the protein product of the pssA gene is not only involved in EPS synthesis, but also required for proper functioning of Rhizobium leguminosarum bv. trifolii cells.
format Online
Article
Text
id pubmed-3876073
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-38760732013-12-31 Mutation in the pssA Gene Involved in Exopolysaccharide Synthesis Leads to Several Physiological and Symbiotic Defects in Rhizobium leguminosarum bv. trifolii Janczarek, Monika Rachwał, Kamila Int J Mol Sci Article The symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum bv. trifolii 24.2 secretes large amounts of acidic exopolysaccharide (EPS), which plays a crucial role in establishment of effective symbiosis with clover. The biosynthesis of this heteropolymer is conducted by a multi-enzymatic complex located in the bacterial inner membrane. PssA protein, responsible for the addition of glucose-1-phosphate to a polyprenyl phosphate carrier, is involved in the first step of EPS synthesis. In this work, we characterize R. leguminosarum bv. trifolii strain Rt270 containing a mini-Tn5 transposon insertion located in the 3′-end of the pssA gene. It has been established that a mutation in this gene causes a pleiotropic effect in rhizobial cells. This is confirmed by the phenotype of the mutant strain Rt270, which exhibits several physiological and symbiotic defects such as a deficiency in EPS synthesis, decreased motility and utilization of some nutrients, decreased sensitivity to several antibiotics, an altered extracellular protein profile, and failed host plant infection. The data of this study indicate that the protein product of the pssA gene is not only involved in EPS synthesis, but also required for proper functioning of Rhizobium leguminosarum bv. trifolii cells. Molecular Diversity Preservation International (MDPI) 2013-12-05 /pmc/articles/PMC3876073/ /pubmed/24317432 http://dx.doi.org/10.3390/ijms141223711 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Janczarek, Monika
Rachwał, Kamila
Mutation in the pssA Gene Involved in Exopolysaccharide Synthesis Leads to Several Physiological and Symbiotic Defects in Rhizobium leguminosarum bv. trifolii
title Mutation in the pssA Gene Involved in Exopolysaccharide Synthesis Leads to Several Physiological and Symbiotic Defects in Rhizobium leguminosarum bv. trifolii
title_full Mutation in the pssA Gene Involved in Exopolysaccharide Synthesis Leads to Several Physiological and Symbiotic Defects in Rhizobium leguminosarum bv. trifolii
title_fullStr Mutation in the pssA Gene Involved in Exopolysaccharide Synthesis Leads to Several Physiological and Symbiotic Defects in Rhizobium leguminosarum bv. trifolii
title_full_unstemmed Mutation in the pssA Gene Involved in Exopolysaccharide Synthesis Leads to Several Physiological and Symbiotic Defects in Rhizobium leguminosarum bv. trifolii
title_short Mutation in the pssA Gene Involved in Exopolysaccharide Synthesis Leads to Several Physiological and Symbiotic Defects in Rhizobium leguminosarum bv. trifolii
title_sort mutation in the pssa gene involved in exopolysaccharide synthesis leads to several physiological and symbiotic defects in rhizobium leguminosarum bv. trifolii
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876073/
https://www.ncbi.nlm.nih.gov/pubmed/24317432
http://dx.doi.org/10.3390/ijms141223711
work_keys_str_mv AT janczarekmonika mutationinthepssageneinvolvedinexopolysaccharidesynthesisleadstoseveralphysiologicalandsymbioticdefectsinrhizobiumleguminosarumbvtrifolii
AT rachwałkamila mutationinthepssageneinvolvedinexopolysaccharidesynthesisleadstoseveralphysiologicalandsymbioticdefectsinrhizobiumleguminosarumbvtrifolii