Cargando…
Biodegradation of Di-n-Butyl Phthalate by a Newly Isolated Halotolerant Sphingobium sp.
A Gram-negative strain (TJ) capable of growing aerobically on mixed phthalate esters (PAEs) as the sole carbon and energy source was isolated from the Haihe estuary, Tianjin, China. It was identified as belonging to the Sphingobium genus on the basis of morphological and physiological characteristic...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876093/ https://www.ncbi.nlm.nih.gov/pubmed/24336064 http://dx.doi.org/10.3390/ijms141224046 |
_version_ | 1782297467673378816 |
---|---|
author | Jin, Decai Kong, Xiao Cui, Bingjian Bai, Zhihui Zhang, Hongxun |
author_facet | Jin, Decai Kong, Xiao Cui, Bingjian Bai, Zhihui Zhang, Hongxun |
author_sort | Jin, Decai |
collection | PubMed |
description | A Gram-negative strain (TJ) capable of growing aerobically on mixed phthalate esters (PAEs) as the sole carbon and energy source was isolated from the Haihe estuary, Tianjin, China. It was identified as belonging to the Sphingobium genus on the basis of morphological and physiological characteristics and 16S rRNA and gyrb gene sequencing. The batch tests for biodegradation of di-n-butyl phthalate (DBP) by the Sphingobium sp. TJ showed that the optimum conditions were 30 °C, pH 7.0, and the absence of NaCl. Stain TJ could tolerate up to 4% NaCl in minimal salt medium supplemented with DBP, although the DBP degradation rates slowed as NaCl concentration increased. In addition, substrate tests showed that strain TJ could utilize shorter side-chained PAEs, such as dimethyl phthalate and diethyl phthalate, but could not metabolize long-chained PAEs, such as di-n-octyl phthalate, diisooctyl phthalate, and di-(2-ethyl-hexyl) phthalate. To our knowledge, this is the first report on the biodegradation characteristics of DBP by a member of the Sphingobium genus. |
format | Online Article Text |
id | pubmed-3876093 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-38760932013-12-31 Biodegradation of Di-n-Butyl Phthalate by a Newly Isolated Halotolerant Sphingobium sp. Jin, Decai Kong, Xiao Cui, Bingjian Bai, Zhihui Zhang, Hongxun Int J Mol Sci Communication A Gram-negative strain (TJ) capable of growing aerobically on mixed phthalate esters (PAEs) as the sole carbon and energy source was isolated from the Haihe estuary, Tianjin, China. It was identified as belonging to the Sphingobium genus on the basis of morphological and physiological characteristics and 16S rRNA and gyrb gene sequencing. The batch tests for biodegradation of di-n-butyl phthalate (DBP) by the Sphingobium sp. TJ showed that the optimum conditions were 30 °C, pH 7.0, and the absence of NaCl. Stain TJ could tolerate up to 4% NaCl in minimal salt medium supplemented with DBP, although the DBP degradation rates slowed as NaCl concentration increased. In addition, substrate tests showed that strain TJ could utilize shorter side-chained PAEs, such as dimethyl phthalate and diethyl phthalate, but could not metabolize long-chained PAEs, such as di-n-octyl phthalate, diisooctyl phthalate, and di-(2-ethyl-hexyl) phthalate. To our knowledge, this is the first report on the biodegradation characteristics of DBP by a member of the Sphingobium genus. Molecular Diversity Preservation International (MDPI) 2013-12-10 /pmc/articles/PMC3876093/ /pubmed/24336064 http://dx.doi.org/10.3390/ijms141224046 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Communication Jin, Decai Kong, Xiao Cui, Bingjian Bai, Zhihui Zhang, Hongxun Biodegradation of Di-n-Butyl Phthalate by a Newly Isolated Halotolerant Sphingobium sp. |
title | Biodegradation of Di-n-Butyl Phthalate by a Newly Isolated Halotolerant Sphingobium sp. |
title_full | Biodegradation of Di-n-Butyl Phthalate by a Newly Isolated Halotolerant Sphingobium sp. |
title_fullStr | Biodegradation of Di-n-Butyl Phthalate by a Newly Isolated Halotolerant Sphingobium sp. |
title_full_unstemmed | Biodegradation of Di-n-Butyl Phthalate by a Newly Isolated Halotolerant Sphingobium sp. |
title_short | Biodegradation of Di-n-Butyl Phthalate by a Newly Isolated Halotolerant Sphingobium sp. |
title_sort | biodegradation of di-n-butyl phthalate by a newly isolated halotolerant sphingobium sp. |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876093/ https://www.ncbi.nlm.nih.gov/pubmed/24336064 http://dx.doi.org/10.3390/ijms141224046 |
work_keys_str_mv | AT jindecai biodegradationofdinbutylphthalatebyanewlyisolatedhalotolerantsphingobiumsp AT kongxiao biodegradationofdinbutylphthalatebyanewlyisolatedhalotolerantsphingobiumsp AT cuibingjian biodegradationofdinbutylphthalatebyanewlyisolatedhalotolerantsphingobiumsp AT baizhihui biodegradationofdinbutylphthalatebyanewlyisolatedhalotolerantsphingobiumsp AT zhanghongxun biodegradationofdinbutylphthalatebyanewlyisolatedhalotolerantsphingobiumsp |