Cargando…
Identification and Characterization of Seven Glutathione S-Transferase Genes from Citrus Red Mite, Panonychus citri (McGregor)
The citrus red mite, Panonychus citri (McGregor), is a global citrus pest, and has developed severe resistance to several types of acaricides. However, the molecular mechanisms of resistance in this mite remain unknown. In this study, seven full-length cDNAs encoding glutathione S-transferases (GSTs...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876109/ https://www.ncbi.nlm.nih.gov/pubmed/24351815 http://dx.doi.org/10.3390/ijms141224255 |
_version_ | 1782297471409455104 |
---|---|
author | Liao, Chong-Yu Zhang, Kun Niu, Jin-Zhi Ding, Tian-Bo Zhong, Rui Xia, Wen-Kai Dou, Wei Wang, Jin-Jun |
author_facet | Liao, Chong-Yu Zhang, Kun Niu, Jin-Zhi Ding, Tian-Bo Zhong, Rui Xia, Wen-Kai Dou, Wei Wang, Jin-Jun |
author_sort | Liao, Chong-Yu |
collection | PubMed |
description | The citrus red mite, Panonychus citri (McGregor), is a global citrus pest, and has developed severe resistance to several types of acaricides. However, the molecular mechanisms of resistance in this mite remain unknown. In this study, seven full-length cDNAs encoding glutathione S-transferases (GSTs) genes were identified and characterized in P. citri. The effects of pyridaben and fenpropathrin exposure on the expression of these genes were also investigated. Phylogenetic analysis revealed that the seven GSTs genes in P. citri cloned in this study belong to three different cytosolic classes, including four in mu, two in delta and one in zeta. Among these seven GSTs genes, the relative expression level of PcGSTm1 was significantly higher in adult than in the other life stages (egg, larvae and nymph). Compared with the control, the mRNA levels of the seven GST genes did not change significantly following exposure to pyridaben at LC(10). However, RT-qPCR results showed that, when exposed to LC(10) of fenpropathrin, six GSTs gene (PcGSTm1, PcGSTm3, PcGSTm4, PcGSTd1, PcGSTd2 and PcGSTz1) transcripts increased in a time-dependent manner. This is the first insight into the molecular characteristics of GSTs gene cDNAs in P. citri. The elevated GSTs gene transcripts following exposure to fenpropathrin might be one of the mechanisms involved in detoxification of this acaricide. |
format | Online Article Text |
id | pubmed-3876109 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-38761092013-12-31 Identification and Characterization of Seven Glutathione S-Transferase Genes from Citrus Red Mite, Panonychus citri (McGregor) Liao, Chong-Yu Zhang, Kun Niu, Jin-Zhi Ding, Tian-Bo Zhong, Rui Xia, Wen-Kai Dou, Wei Wang, Jin-Jun Int J Mol Sci Article The citrus red mite, Panonychus citri (McGregor), is a global citrus pest, and has developed severe resistance to several types of acaricides. However, the molecular mechanisms of resistance in this mite remain unknown. In this study, seven full-length cDNAs encoding glutathione S-transferases (GSTs) genes were identified and characterized in P. citri. The effects of pyridaben and fenpropathrin exposure on the expression of these genes were also investigated. Phylogenetic analysis revealed that the seven GSTs genes in P. citri cloned in this study belong to three different cytosolic classes, including four in mu, two in delta and one in zeta. Among these seven GSTs genes, the relative expression level of PcGSTm1 was significantly higher in adult than in the other life stages (egg, larvae and nymph). Compared with the control, the mRNA levels of the seven GST genes did not change significantly following exposure to pyridaben at LC(10). However, RT-qPCR results showed that, when exposed to LC(10) of fenpropathrin, six GSTs gene (PcGSTm1, PcGSTm3, PcGSTm4, PcGSTd1, PcGSTd2 and PcGSTz1) transcripts increased in a time-dependent manner. This is the first insight into the molecular characteristics of GSTs gene cDNAs in P. citri. The elevated GSTs gene transcripts following exposure to fenpropathrin might be one of the mechanisms involved in detoxification of this acaricide. Molecular Diversity Preservation International (MDPI) 2013-12-13 /pmc/articles/PMC3876109/ /pubmed/24351815 http://dx.doi.org/10.3390/ijms141224255 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Liao, Chong-Yu Zhang, Kun Niu, Jin-Zhi Ding, Tian-Bo Zhong, Rui Xia, Wen-Kai Dou, Wei Wang, Jin-Jun Identification and Characterization of Seven Glutathione S-Transferase Genes from Citrus Red Mite, Panonychus citri (McGregor) |
title | Identification and Characterization of Seven Glutathione S-Transferase Genes from Citrus Red Mite, Panonychus citri (McGregor) |
title_full | Identification and Characterization of Seven Glutathione S-Transferase Genes from Citrus Red Mite, Panonychus citri (McGregor) |
title_fullStr | Identification and Characterization of Seven Glutathione S-Transferase Genes from Citrus Red Mite, Panonychus citri (McGregor) |
title_full_unstemmed | Identification and Characterization of Seven Glutathione S-Transferase Genes from Citrus Red Mite, Panonychus citri (McGregor) |
title_short | Identification and Characterization of Seven Glutathione S-Transferase Genes from Citrus Red Mite, Panonychus citri (McGregor) |
title_sort | identification and characterization of seven glutathione s-transferase genes from citrus red mite, panonychus citri (mcgregor) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876109/ https://www.ncbi.nlm.nih.gov/pubmed/24351815 http://dx.doi.org/10.3390/ijms141224255 |
work_keys_str_mv | AT liaochongyu identificationandcharacterizationofsevenglutathionestransferasegenesfromcitrusredmitepanonychuscitrimcgregor AT zhangkun identificationandcharacterizationofsevenglutathionestransferasegenesfromcitrusredmitepanonychuscitrimcgregor AT niujinzhi identificationandcharacterizationofsevenglutathionestransferasegenesfromcitrusredmitepanonychuscitrimcgregor AT dingtianbo identificationandcharacterizationofsevenglutathionestransferasegenesfromcitrusredmitepanonychuscitrimcgregor AT zhongrui identificationandcharacterizationofsevenglutathionestransferasegenesfromcitrusredmitepanonychuscitrimcgregor AT xiawenkai identificationandcharacterizationofsevenglutathionestransferasegenesfromcitrusredmitepanonychuscitrimcgregor AT douwei identificationandcharacterizationofsevenglutathionestransferasegenesfromcitrusredmitepanonychuscitrimcgregor AT wangjinjun identificationandcharacterizationofsevenglutathionestransferasegenesfromcitrusredmitepanonychuscitrimcgregor |