Cargando…
Adaptive L(1/2) Shooting Regularization Method for Survival Analysis Using Gene Expression Data
A new adaptive L(1/2) shooting regularization method for variable selection based on the Cox's proportional hazards mode being proposed. This adaptive L(1/2) shooting algorithm can be easily obtained by the optimization of a reweighed iterative series of L(1) penalties and a shooting strategy o...
Autores principales: | Liu, Xiao-Ying, Liang, Yong, Xu, Zong-Ben, Zhang, Hai, Leung, Kwong-Sak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876878/ https://www.ncbi.nlm.nih.gov/pubmed/24453861 http://dx.doi.org/10.1155/2013/475702 |
Ejemplares similares
-
Cancer survival analysis using semi-supervised learning method based on Cox and AFT models with L(1/2) regularization
por: Liang, Yong, et al.
Publicado: (2016) -
Sparse logistic regression with a L(1/2) penalty for gene selection in cancer classification
por: Liang, Yong, et al.
Publicado: (2013) -
An Adaptive Ridge Procedure for L(0) Regularization
por: Frommlet, Florian, et al.
Publicado: (2016) -
Feature Selection and Cancer Classification via Sparse Logistic Regression with the Hybrid L(1/2 +2) Regularization
por: Huang, Hai-Hui, et al.
Publicado: (2016) -
Normalization Methods for the Analysis of Unbalanced Transcriptome Data: A Review
por: Liu, Xueyan, et al.
Publicado: (2019)