Cargando…

Peg3 Mutational Effects on Reproduction and Placenta-Specific Gene Families

Peg3 (paternally expressed gene 3) is an imprinted gene encoding a DNA-binding protein. This gene plays important roles in controlling fetal growth rates and nurturing behaviors. In the current study, a new mutant mouse model has been generated to further characterize the functions of this DNA-bindi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Joomyeong, Frey, Wesley D., He, Hongzhi, Kim, Hana, Ekram, Muhammad B., Bakshi, Arundhati, Faisal, Mohammad, Perera, Bambarendage P. U., Ye, An, Teruyama, Ryoichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877027/
https://www.ncbi.nlm.nih.gov/pubmed/24391757
http://dx.doi.org/10.1371/journal.pone.0083359
Descripción
Sumario:Peg3 (paternally expressed gene 3) is an imprinted gene encoding a DNA-binding protein. This gene plays important roles in controlling fetal growth rates and nurturing behaviors. In the current study, a new mutant mouse model has been generated to further characterize the functions of this DNA-binding protein. Besides known phenotypes, this new mutant model also revealed potential roles of Peg3 in mammalian reproduction. Female heterozygotes produce a much smaller number of mature oocytes than the wild-type littermates, resulting in reduced litter sizes. According to genome-wide expression analyses, several placenta-specific gene families are de-repressed in the brain of Peg3 heterozygous embryos, including prolactin, cathepsin and carcinoembryonic antigen cell adhesion molecule (Ceacam) families. The observed de-repression is more pronounced in females than in males. The de-repression of several members of these gene families is observed even in the adult brain, suggesting potential defects in epigenetic setting of the placenta-specific gene families in the Peg3 mutants. Overall, these results indicate that Peg3 likely controls the transcription of several placenta-specific gene families, and further suggest that this predicted transcriptional control by Peg3 might be mediated through unknown epigenetic mechanisms.