Cargando…
Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology
Increased availability of bioinformatics resources is creating opportunities for the application of network pharmacology to predict drug effects and toxicity resulting from multi-target interactions. Here we present a high-precision computational prediction approach that combines two elaborately bui...
Autores principales: | Hsin, Kun-Yi, Ghosh, Samik, Kitano, Hiroaki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877102/ https://www.ncbi.nlm.nih.gov/pubmed/24391846 http://dx.doi.org/10.1371/journal.pone.0083922 |
Ejemplares similares
-
systemsDock: a web server for network pharmacology-based prediction and analysis
por: Hsin, Kun-Yi, et al.
Publicado: (2016) -
Toward an integrated software platform for systems pharmacology
por: Ghosh, Samik, et al.
Publicado: (2013) -
Modelling peptide–protein complexes: docking, simulations and machine learning
por: Mondal, Arup, et al.
Publicado: (2022) -
Combined docking and machine learning identify key molecular determinants of ligand pharmacological activity on β2 adrenoceptor
por: Jiménez‐Rosés, Mireia, et al.
Publicado: (2022) -
Protein–Ligand Docking in the Machine-Learning Era
por: Yang, Chao, et al.
Publicado: (2022)