Cargando…
Sparsity as Cellular Objective to Infer Directed Metabolic Networks from Steady-State Metabolome Data: A Theoretical Analysis
Since metabolome data are derived from the underlying metabolic network, reverse engineering of such data to recover the network topology is of wide interest. Lyapunov equation puts a constraint to the link between data and network by coupling the covariance of data with the strength of interactions...
Autores principales: | Öksüz, Melik, Sadıkoğlu, Hasan, Çakır, Tunahan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877278/ https://www.ncbi.nlm.nih.gov/pubmed/24391961 http://dx.doi.org/10.1371/journal.pone.0084505 |
Ejemplares similares
-
JacLy: a Jacobian-based method for the inference of metabolic interactions from the covariance of steady-state metabolome data
por: Khatibipour, Mohammad Jafar, et al.
Publicado: (2018) -
Variable Selection in Untargeted Metabolomics and the Danger of Sparsity
por: Tinnevelt, Gerjen H., et al.
Publicado: (2020) -
Direction-of-Arrival Estimation Based on Joint Sparsity
por: Wang, Junhua, et al.
Publicado: (2011) -
HARMONIES: A Hybrid Approach for Microbiome Networks Inference via Exploiting Sparsity
por: Jiang, Shuang, et al.
Publicado: (2020) -
Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects
por: Sidorenko, Pavel, et al.
Publicado: (2015)