Cargando…

Partitioning the Fitness Components of RNA Populations Evolving In Vitro

All individuals in an evolving population compete for resources, and their performance is measured by a fitness metric. The performance of the individuals is relative to their abilities and to the biotic surroundings – the conditions under which they are competing – and involves many components. Mol...

Descripción completa

Detalles Bibliográficos
Autores principales: Díaz Arenas, Carolina, Lehman, Niles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877288/
https://www.ncbi.nlm.nih.gov/pubmed/24391957
http://dx.doi.org/10.1371/journal.pone.0084454
_version_ 1782297621325414400
author Díaz Arenas, Carolina
Lehman, Niles
author_facet Díaz Arenas, Carolina
Lehman, Niles
author_sort Díaz Arenas, Carolina
collection PubMed
description All individuals in an evolving population compete for resources, and their performance is measured by a fitness metric. The performance of the individuals is relative to their abilities and to the biotic surroundings – the conditions under which they are competing – and involves many components. Molecules evolving in a test tube can also face complex environments and dynamics, and their fitness measurements should reflect the complexity of various contributing factors as well. Here, the fitnesses of a set of ligase ribozymes evolved by the continuous in vitro evolution system were measured. During these evolution cycles there are three different catalytic steps, ligation, reverse transcription, and forward transcription, each with a potential differential influence on the total fitness of each ligase. For six distinct ligase ribozyme genotypes that resulted from continuous evolution experiments, the rates of reaction were measured for each catalytic step by tracking the kinetics of enzymes reacting with their substrates. The reaction products were analyzed for the amount of product formed per time. Each catalytic step of the evolution cycle was found to have a differential incidence in the total fitness of the ligases, and therefore the total fitness of any ligase cannot be inferred from only one catalytic step of the evolution cycle. Generally, the ribozyme-directed ligation step tends to impart the largest effect on overall fitness. Yet it was found that the ligase genotypes have different absolute fitness values, and that they exploit different stages of the overall cycle to gain a net advantage. This is a new example of molecular niche partitioning that may allow for coexistence of more than one species in a population. The dissection of molecular events into multiple components of fitness provides new insights into molecular evolutionary studies in the laboratory, and has the potential to explain heretofore counterintuitive findings.
format Online
Article
Text
id pubmed-3877288
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-38772882014-01-03 Partitioning the Fitness Components of RNA Populations Evolving In Vitro Díaz Arenas, Carolina Lehman, Niles PLoS One Research Article All individuals in an evolving population compete for resources, and their performance is measured by a fitness metric. The performance of the individuals is relative to their abilities and to the biotic surroundings – the conditions under which they are competing – and involves many components. Molecules evolving in a test tube can also face complex environments and dynamics, and their fitness measurements should reflect the complexity of various contributing factors as well. Here, the fitnesses of a set of ligase ribozymes evolved by the continuous in vitro evolution system were measured. During these evolution cycles there are three different catalytic steps, ligation, reverse transcription, and forward transcription, each with a potential differential influence on the total fitness of each ligase. For six distinct ligase ribozyme genotypes that resulted from continuous evolution experiments, the rates of reaction were measured for each catalytic step by tracking the kinetics of enzymes reacting with their substrates. The reaction products were analyzed for the amount of product formed per time. Each catalytic step of the evolution cycle was found to have a differential incidence in the total fitness of the ligases, and therefore the total fitness of any ligase cannot be inferred from only one catalytic step of the evolution cycle. Generally, the ribozyme-directed ligation step tends to impart the largest effect on overall fitness. Yet it was found that the ligase genotypes have different absolute fitness values, and that they exploit different stages of the overall cycle to gain a net advantage. This is a new example of molecular niche partitioning that may allow for coexistence of more than one species in a population. The dissection of molecular events into multiple components of fitness provides new insights into molecular evolutionary studies in the laboratory, and has the potential to explain heretofore counterintuitive findings. Public Library of Science 2013-12-31 /pmc/articles/PMC3877288/ /pubmed/24391957 http://dx.doi.org/10.1371/journal.pone.0084454 Text en © 2013 Díaz Arenas, Lehman http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Díaz Arenas, Carolina
Lehman, Niles
Partitioning the Fitness Components of RNA Populations Evolving In Vitro
title Partitioning the Fitness Components of RNA Populations Evolving In Vitro
title_full Partitioning the Fitness Components of RNA Populations Evolving In Vitro
title_fullStr Partitioning the Fitness Components of RNA Populations Evolving In Vitro
title_full_unstemmed Partitioning the Fitness Components of RNA Populations Evolving In Vitro
title_short Partitioning the Fitness Components of RNA Populations Evolving In Vitro
title_sort partitioning the fitness components of rna populations evolving in vitro
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877288/
https://www.ncbi.nlm.nih.gov/pubmed/24391957
http://dx.doi.org/10.1371/journal.pone.0084454
work_keys_str_mv AT diazarenascarolina partitioningthefitnesscomponentsofrnapopulationsevolvinginvitro
AT lehmanniles partitioningthefitnesscomponentsofrnapopulationsevolvinginvitro