Cargando…
TAILOR: Transgene Activation and Inactivation Using Lox and Rox in Zebrafish
The ability to achieve precisely tailored activation and inactivation of gene expression represents a critical utility for vertebrate model organisms. In this regard, Cre and other site-specific DNA recombinases have come to play a central role in achieving temporally regulated and cell type-specifi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877360/ https://www.ncbi.nlm.nih.gov/pubmed/24391998 http://dx.doi.org/10.1371/journal.pone.0085218 |
_version_ | 1782297631673810944 |
---|---|
author | Park, Joon Tae Leach, Steven D. |
author_facet | Park, Joon Tae Leach, Steven D. |
author_sort | Park, Joon Tae |
collection | PubMed |
description | The ability to achieve precisely tailored activation and inactivation of gene expression represents a critical utility for vertebrate model organisms. In this regard, Cre and other site-specific DNA recombinases have come to play a central role in achieving temporally regulated and cell type-specific genetic manipulation. In zebrafish, both Cre and Flp recombinases have been applied for inducible activation, inactivation and inversion of inserted genomic elements. Here we describe the addition of Dre, a heterospecific Cre-related site-specific recombinase, to the zebrafish genomic toolbox. Combining Dre-based recombination in zebrafish with established Cre/lox technology, we have established an effective strategy for transgene activation and inactivation using lox and rox (TAILOR). Using stable transgenic lines expressing tamoxifen-inducible CreER(T2) and RU486-inducible DrePR fusions, we demonstrate that Cre and Dre retain non-overlapping specificities for their respective lox and rox target sites in larval zebrafish, and that their combinatorial and sequential activation can achieve precisely timed transgene activation and inactivation. In addition to TAILOR, the successful application of Dre/rox technology in zebrafish will facilitate a variety of additional downstream genetic applications, including sequential lineage labeling, complex genomic rearrangements and the precise temporal and spatial control of gene expression through the intersection of partially overlapping promoter activities. |
format | Online Article Text |
id | pubmed-3877360 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38773602014-01-03 TAILOR: Transgene Activation and Inactivation Using Lox and Rox in Zebrafish Park, Joon Tae Leach, Steven D. PLoS One Research Article The ability to achieve precisely tailored activation and inactivation of gene expression represents a critical utility for vertebrate model organisms. In this regard, Cre and other site-specific DNA recombinases have come to play a central role in achieving temporally regulated and cell type-specific genetic manipulation. In zebrafish, both Cre and Flp recombinases have been applied for inducible activation, inactivation and inversion of inserted genomic elements. Here we describe the addition of Dre, a heterospecific Cre-related site-specific recombinase, to the zebrafish genomic toolbox. Combining Dre-based recombination in zebrafish with established Cre/lox technology, we have established an effective strategy for transgene activation and inactivation using lox and rox (TAILOR). Using stable transgenic lines expressing tamoxifen-inducible CreER(T2) and RU486-inducible DrePR fusions, we demonstrate that Cre and Dre retain non-overlapping specificities for their respective lox and rox target sites in larval zebrafish, and that their combinatorial and sequential activation can achieve precisely timed transgene activation and inactivation. In addition to TAILOR, the successful application of Dre/rox technology in zebrafish will facilitate a variety of additional downstream genetic applications, including sequential lineage labeling, complex genomic rearrangements and the precise temporal and spatial control of gene expression through the intersection of partially overlapping promoter activities. Public Library of Science 2013-12-31 /pmc/articles/PMC3877360/ /pubmed/24391998 http://dx.doi.org/10.1371/journal.pone.0085218 Text en © 2013 Park, Leach http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Park, Joon Tae Leach, Steven D. TAILOR: Transgene Activation and Inactivation Using Lox and Rox in Zebrafish |
title | TAILOR: Transgene Activation and Inactivation Using Lox and Rox in Zebrafish |
title_full | TAILOR: Transgene Activation and Inactivation Using Lox and Rox in Zebrafish |
title_fullStr | TAILOR: Transgene Activation and Inactivation Using Lox and Rox in Zebrafish |
title_full_unstemmed | TAILOR: Transgene Activation and Inactivation Using Lox and Rox in Zebrafish |
title_short | TAILOR: Transgene Activation and Inactivation Using Lox and Rox in Zebrafish |
title_sort | tailor: transgene activation and inactivation using lox and rox in zebrafish |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877360/ https://www.ncbi.nlm.nih.gov/pubmed/24391998 http://dx.doi.org/10.1371/journal.pone.0085218 |
work_keys_str_mv | AT parkjoontae tailortransgeneactivationandinactivationusingloxandroxinzebrafish AT leachstevend tailortransgeneactivationandinactivationusingloxandroxinzebrafish |