Cargando…

The K(+) Channel K(Ca)3.1 as a Novel Target for Idiopathic Pulmonary Fibrosis

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a common, progressive and invariably lethal interstitial lung disease with no effective therapy. We hypothesised that K(Ca)3.1 K(+) channel-dependent cell processes contribute to IPF pathophysiology. METHODS: K(Ca)3.1 expression in primary human lun...

Descripción completa

Detalles Bibliográficos
Autores principales: Roach, Katy Morgan, Duffy, Stephen Mark, Coward, William, Feghali-Bostwick, Carol, Wulff, Heike, Bradding, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877378/
https://www.ncbi.nlm.nih.gov/pubmed/24392001
http://dx.doi.org/10.1371/journal.pone.0085244
Descripción
Sumario:BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a common, progressive and invariably lethal interstitial lung disease with no effective therapy. We hypothesised that K(Ca)3.1 K(+) channel-dependent cell processes contribute to IPF pathophysiology. METHODS: K(Ca)3.1 expression in primary human lung myofibroblasts was examined using RT-PCR, western blot, immunofluorescence and patch-clamp electrophysiology. The role of K(Ca)3.1 channels in myofibroblast proliferation, wound healing, collagen secretion and contraction was examined using two specific and distinct K(Ca)3.1 blockers (TRAM-34 and ICA-17043 [Senicapoc]). RESULTS: Both healthy non fibrotic control and IPF-derived human lung myofibroblasts expressed K(Ca)3.1 channel mRNA and protein. K(Ca)3.1 ion currents were elicited more frequently and were larger in IPF-derived myofibroblasts compared to controls. K(Ca)3.1 currents were increased in myofibroblasts by TGFβ1 and basic FGF. K(Ca)3.1 was expressed strongly in IPF tissue. K(Ca)3.1 pharmacological blockade attenuated human myofibroblast proliferation, wound healing, collagen secretion and contractility in vitro, and this was associated with inhibition of TGFβ1-dependent increases in intracellular free Ca(2+). CONCLUSIONS: K(Ca)3.1 activity promotes pro-fibrotic human lung myofibroblast function. Blocking K(Ca)3.1 may offer a novel approach to treating IPF with the potential for rapid translation to the clinic.