Cargando…

Polymorphism of rs1836882 in NOX4 Gene Modifies Associations between Dietary Caloric Intake and ROS Levels in Peripheral Blood Mononuclear Cells

Excessive caloric intake is a contributing risk factor for human metabolic disorders. Caloric restriction may prolong a person’s life by lowering the incidence of deadly diseases. Reactive oxygen species (ROS) in peripheral blood mononuclear cells (PBMC) have been associated with the biochemical bas...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Qiang, Li, Hong, Wang, Ningfu, Chen, Huaihong, Jin, Qihui, Zhang, Ruoyu, Wang, Jing, Chen, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877383/
https://www.ncbi.nlm.nih.gov/pubmed/24392026
http://dx.doi.org/10.1371/journal.pone.0085660
_version_ 1782297636899913728
author Liu, Qiang
Li, Hong
Wang, Ningfu
Chen, Huaihong
Jin, Qihui
Zhang, Ruoyu
Wang, Jing
Chen, Ying
author_facet Liu, Qiang
Li, Hong
Wang, Ningfu
Chen, Huaihong
Jin, Qihui
Zhang, Ruoyu
Wang, Jing
Chen, Ying
author_sort Liu, Qiang
collection PubMed
description Excessive caloric intake is a contributing risk factor for human metabolic disorders. Caloric restriction may prolong a person’s life by lowering the incidence of deadly diseases. Reactive oxygen species (ROS) in peripheral blood mononuclear cells (PBMC) have been associated with the biochemical basis of the relationship between caloric intake and pathophysiologic processes. Polymorphisms associated with ROS generation genes are being increasingly implicated in inter-individual responses to daily caloric intake alterations. In the current study, a single nucleotide polymorphism, rs1836882, in the nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) gene’s promoter region was found to modulate associations between dietary caloric intake and ROS levels in PBMC. Based on rs1836882, 656 Chinese Han participants were classified into CC, CT and TT genotypes. ROS levels in PBMC were significantly higher in the CC or CT genotypes compared with the TT genotype with the same increases in daily caloric intake. Using an electrophoretic mobility shift assay, NOX4 promoter region with rs1836882 (T) was observed to have a higher affinity for hepatocyte nuclear factor gamma (HNF3γ) protein than rs1836882 (C). HNF3γ protein over-expression decreased NOX4 gene transcriptional activity in the TT genotype more than in the CC genotype (5.68% vs. 2.12%, P<0.05) in a dual luciferase reporter assay. By silencing the NOX4 gene using small interfering RNA or over-expressing HNF3γ using an expression plasmid, serum from high dietary caloric intake participants decreased ROS levels in PBMC of the TT genotype more than in the CC or CT genotype via HNF3γ down-regulating the NOX4 gene expression signaling pathway. This is the first study to report on the functions of phenotypes of rs1836882 in the NOX4 gene, and it suggests rs1836882 as a candidate gene for interpreting inter-individual ROS levels differences in PBMC induced by alterations in daily caloric intake.
format Online
Article
Text
id pubmed-3877383
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-38773832014-01-03 Polymorphism of rs1836882 in NOX4 Gene Modifies Associations between Dietary Caloric Intake and ROS Levels in Peripheral Blood Mononuclear Cells Liu, Qiang Li, Hong Wang, Ningfu Chen, Huaihong Jin, Qihui Zhang, Ruoyu Wang, Jing Chen, Ying PLoS One Research Article Excessive caloric intake is a contributing risk factor for human metabolic disorders. Caloric restriction may prolong a person’s life by lowering the incidence of deadly diseases. Reactive oxygen species (ROS) in peripheral blood mononuclear cells (PBMC) have been associated with the biochemical basis of the relationship between caloric intake and pathophysiologic processes. Polymorphisms associated with ROS generation genes are being increasingly implicated in inter-individual responses to daily caloric intake alterations. In the current study, a single nucleotide polymorphism, rs1836882, in the nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) gene’s promoter region was found to modulate associations between dietary caloric intake and ROS levels in PBMC. Based on rs1836882, 656 Chinese Han participants were classified into CC, CT and TT genotypes. ROS levels in PBMC were significantly higher in the CC or CT genotypes compared with the TT genotype with the same increases in daily caloric intake. Using an electrophoretic mobility shift assay, NOX4 promoter region with rs1836882 (T) was observed to have a higher affinity for hepatocyte nuclear factor gamma (HNF3γ) protein than rs1836882 (C). HNF3γ protein over-expression decreased NOX4 gene transcriptional activity in the TT genotype more than in the CC genotype (5.68% vs. 2.12%, P<0.05) in a dual luciferase reporter assay. By silencing the NOX4 gene using small interfering RNA or over-expressing HNF3γ using an expression plasmid, serum from high dietary caloric intake participants decreased ROS levels in PBMC of the TT genotype more than in the CC or CT genotype via HNF3γ down-regulating the NOX4 gene expression signaling pathway. This is the first study to report on the functions of phenotypes of rs1836882 in the NOX4 gene, and it suggests rs1836882 as a candidate gene for interpreting inter-individual ROS levels differences in PBMC induced by alterations in daily caloric intake. Public Library of Science 2013-12-31 /pmc/articles/PMC3877383/ /pubmed/24392026 http://dx.doi.org/10.1371/journal.pone.0085660 Text en © 2013 Liu et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Liu, Qiang
Li, Hong
Wang, Ningfu
Chen, Huaihong
Jin, Qihui
Zhang, Ruoyu
Wang, Jing
Chen, Ying
Polymorphism of rs1836882 in NOX4 Gene Modifies Associations between Dietary Caloric Intake and ROS Levels in Peripheral Blood Mononuclear Cells
title Polymorphism of rs1836882 in NOX4 Gene Modifies Associations between Dietary Caloric Intake and ROS Levels in Peripheral Blood Mononuclear Cells
title_full Polymorphism of rs1836882 in NOX4 Gene Modifies Associations between Dietary Caloric Intake and ROS Levels in Peripheral Blood Mononuclear Cells
title_fullStr Polymorphism of rs1836882 in NOX4 Gene Modifies Associations between Dietary Caloric Intake and ROS Levels in Peripheral Blood Mononuclear Cells
title_full_unstemmed Polymorphism of rs1836882 in NOX4 Gene Modifies Associations between Dietary Caloric Intake and ROS Levels in Peripheral Blood Mononuclear Cells
title_short Polymorphism of rs1836882 in NOX4 Gene Modifies Associations between Dietary Caloric Intake and ROS Levels in Peripheral Blood Mononuclear Cells
title_sort polymorphism of rs1836882 in nox4 gene modifies associations between dietary caloric intake and ros levels in peripheral blood mononuclear cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877383/
https://www.ncbi.nlm.nih.gov/pubmed/24392026
http://dx.doi.org/10.1371/journal.pone.0085660
work_keys_str_mv AT liuqiang polymorphismofrs1836882innox4genemodifiesassociationsbetweendietarycaloricintakeandroslevelsinperipheralbloodmononuclearcells
AT lihong polymorphismofrs1836882innox4genemodifiesassociationsbetweendietarycaloricintakeandroslevelsinperipheralbloodmononuclearcells
AT wangningfu polymorphismofrs1836882innox4genemodifiesassociationsbetweendietarycaloricintakeandroslevelsinperipheralbloodmononuclearcells
AT chenhuaihong polymorphismofrs1836882innox4genemodifiesassociationsbetweendietarycaloricintakeandroslevelsinperipheralbloodmononuclearcells
AT jinqihui polymorphismofrs1836882innox4genemodifiesassociationsbetweendietarycaloricintakeandroslevelsinperipheralbloodmononuclearcells
AT zhangruoyu polymorphismofrs1836882innox4genemodifiesassociationsbetweendietarycaloricintakeandroslevelsinperipheralbloodmononuclearcells
AT wangjing polymorphismofrs1836882innox4genemodifiesassociationsbetweendietarycaloricintakeandroslevelsinperipheralbloodmononuclearcells
AT chenying polymorphismofrs1836882innox4genemodifiesassociationsbetweendietarycaloricintakeandroslevelsinperipheralbloodmononuclearcells