Cargando…

TP53 genetic polymorphisms, interactions with lifestyle factors and lung cancer risk: a case control study in a Chinese population

BACKGROUND: A pathway-based genotyping analysis suggested rs2078486 was a novel TP53 SNP, but very few studies replicate this association. TP53 rs1042522 is the most commonly studied SNP, but very few studies examined its potential interaction with environmental factors in relation to lung cancer ri...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yanli, Chang, Shen-Chih, Niu, Rungui, Liu, Li, Crabtree-Ide, Christina R, Zhao, Baoxing, Shi, Jianping, Han, Xiaoyou, Li, Jiawei, Su, Jia, Cai, Lin, Yu, Shunzhang, Zhang, Zuo-Feng, Mu, Lina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877976/
https://www.ncbi.nlm.nih.gov/pubmed/24369748
http://dx.doi.org/10.1186/1471-2407-13-607
Descripción
Sumario:BACKGROUND: A pathway-based genotyping analysis suggested rs2078486 was a novel TP53 SNP, but very few studies replicate this association. TP53 rs1042522 is the most commonly studied SNP, but very few studies examined its potential interaction with environmental factors in relation to lung cancer risk. This study aims to examine associations between two TP53 single-nucleotide polymorphisms (SNPs) (rs2078486, rs1042522), their potential interaction with environmental factors and risk of lung cancer. METHODS: A case–control study was conducted in Taiyuan, China. Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs). Multiplicative and additive interactions between TP53 SNPs and lifestyle factors were evaluated. RESULTS: Variant TP53 rs2078486 SNP was significantly associated with elevated lung cancer risk among smokers (OR: 1.70, 95% CI: 1.08 - 2.67) and individuals with high indoor air pollution exposure (OR: 1.51, 95% CI: 1.00-2.30). Significant or borderline significant multiplicative and additive interactions were found between TP53 rs2078486 polymorphism with smoking and indoor air pollution exposure. The variant genotype of TP53 SNP rs1042522 significantly increased lung cancer risk in the total population (OR: 1.57, 95% CI: 1.11-2.21), but there was no evidence of heterogeneity among individuals with different lifestyle factors. CONCLUSIONS: This study confirmed that TP53 rs2078486 SNP is potentially a novel TP53 SNP that may affect lung cancer risk. Our study also suggested potential synergetic effects of TP53 rs2078486 SNP with smoking and indoor air pollution exposure on lung cancer risk.