Cargando…
Investigation of Water Safety in Non-treated Drinking Water with Trace Toxic Metals
The trace toxic metal copper was assayed using mercury immobilized on a carbon nanotube electrode (MCW), with a graphite counter and a reference electrode. In this study, a macro-scale convection motor was interfaced with a MCW three-electrode system, in which a handmade MCW was optimized using cycl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Toxicology
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878001/ https://www.ncbi.nlm.nih.gov/pubmed/24386522 http://dx.doi.org/10.5487/TR.2013.29.3.211 |
Sumario: | The trace toxic metal copper was assayed using mercury immobilized on a carbon nanotube electrode (MCW), with a graphite counter and a reference electrode. In this study, a macro-scale convection motor was interfaced with a MCW three-electrode system, in which a handmade MCW was optimized using cyclic- and square-wave stripping voltammetry. An analytical electrolyte for tap water was used instead of an expensive acid or base ionic solution. Under these conditions, optimum parameters were 0.09 V amplitude, 40 Hz frequency, 0.01 V incremental potential, and a 60-s accumulation time. A diagnostic working curve was obtained from 50.0 to 350 μg/L. At a constant Cu(II) concentration of 10.0 μg/L, the statistical relative standard deviation was 1.78% (RSD, n = 15), the analytical accumulation time was only 60 s, and the analytical detection limit approached 4.6 μg/L (signal/noise = 3). The results were applied to nontreated drinking water. The content of the analyzed copper using 9.0 and 4.0 μg/L standards were 8.68 μg/L and 3.96 μg/L; statistical values R(2) = 0.9987 and R(2) = 0.9534, respectively. This method is applicable to biological diagnostics or food surveys. |
---|