Cargando…
Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures
BACKGROUND: Treating traumatic fractures in osteoporosis is challenging. Multiple clinical treatment options are found in literature. Augmentation techniques are promising to reduce treatment-related morbidity. In recent years, there have been an increasing number of reports about extended indicatio...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878408/ https://www.ncbi.nlm.nih.gov/pubmed/24359173 http://dx.doi.org/10.1186/1471-2474-14-360 |
_version_ | 1782297801667903488 |
---|---|
author | Hartensuer, René Gehweiler, Dominic Schulze, Martin Matuszewski, Lars Raschke, Michael J Vordemvenne, Thomas |
author_facet | Hartensuer, René Gehweiler, Dominic Schulze, Martin Matuszewski, Lars Raschke, Michael J Vordemvenne, Thomas |
author_sort | Hartensuer, René |
collection | PubMed |
description | BACKGROUND: Treating traumatic fractures in osteoporosis is challenging. Multiple clinical treatment options are found in literature. Augmentation techniques are promising to reduce treatment-related morbidity. In recent years, there have been an increasing number of reports about extended indication for augmentation techniques. However, biomechanical evaluations of these techniques are limited. METHODS: Nine thoracolumbar osteoporotic spinal samples (4 FSU) were harvested from postmortem donors and immediately frozen. Biomechanical testing was performed by a robotic-based spine tester. Standardized incomplete burst fractures were created by a combination of osteotomy-like weakening and high velocity compression using a hydraulic material testing apparatus. Biomechanical measurements were performed on specimens in the following conditions: 1) intact, 2) fractured, 3) bisegmental instrumented, 4) bisegmental instrumented with vertebroplasty (hybrid augmentation, HA) and 5) stand-alone vertebroplasty (VP). The range of motion (RoM), neutral zone (NZ), elastic zone (EZ) and stiffness parameters were determined. Statistical evaluation was performed using Wilcoxon signed-rank test for paired samples (p = 0.05). RESULTS: Significant increases in RoM and in the NZ and EZ (p < 0.005) were observed after fracture production. The RoM was decreased significantly by applying the dorsal bisegmental instrumentation to the fractured specimens (p < 0.005). VP reduced fractured RoM in flexion but was still increased significantly (p < 0.05) above intact kinematic values. NZ stiffness (p < 0.05) and EZ stiffness (p < 0.01) was increased by VP but remained lower than prefracture values. The combination of short segment instrumentation and vertebroplasty (HA) showed no significant changes in RoM and stiffness in NZ in comparison to the instrumented group, except for significant increase of EZ stiffness in flexion (p < 0.05). CONCLUSIONS: Stand-alone vertebroplasty (VP) showed some degree of support of the anterior column but was accompanied by persistent traumatic instability. Therefore, we would advocate against using VP as a stand-alone procedure in traumatic fractures. HA did not increase primary stability of short segment instrumentation. Some additional support of anterior column and changes of kinematic values of the EZ may lead one to suppose that additive augmentation may reduce the load of dorsal implants and possibly reduce the risk of implant failure. |
format | Online Article Text |
id | pubmed-3878408 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38784082014-01-03 Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures Hartensuer, René Gehweiler, Dominic Schulze, Martin Matuszewski, Lars Raschke, Michael J Vordemvenne, Thomas BMC Musculoskelet Disord Research Article BACKGROUND: Treating traumatic fractures in osteoporosis is challenging. Multiple clinical treatment options are found in literature. Augmentation techniques are promising to reduce treatment-related morbidity. In recent years, there have been an increasing number of reports about extended indication for augmentation techniques. However, biomechanical evaluations of these techniques are limited. METHODS: Nine thoracolumbar osteoporotic spinal samples (4 FSU) were harvested from postmortem donors and immediately frozen. Biomechanical testing was performed by a robotic-based spine tester. Standardized incomplete burst fractures were created by a combination of osteotomy-like weakening and high velocity compression using a hydraulic material testing apparatus. Biomechanical measurements were performed on specimens in the following conditions: 1) intact, 2) fractured, 3) bisegmental instrumented, 4) bisegmental instrumented with vertebroplasty (hybrid augmentation, HA) and 5) stand-alone vertebroplasty (VP). The range of motion (RoM), neutral zone (NZ), elastic zone (EZ) and stiffness parameters were determined. Statistical evaluation was performed using Wilcoxon signed-rank test for paired samples (p = 0.05). RESULTS: Significant increases in RoM and in the NZ and EZ (p < 0.005) were observed after fracture production. The RoM was decreased significantly by applying the dorsal bisegmental instrumentation to the fractured specimens (p < 0.005). VP reduced fractured RoM in flexion but was still increased significantly (p < 0.05) above intact kinematic values. NZ stiffness (p < 0.05) and EZ stiffness (p < 0.01) was increased by VP but remained lower than prefracture values. The combination of short segment instrumentation and vertebroplasty (HA) showed no significant changes in RoM and stiffness in NZ in comparison to the instrumented group, except for significant increase of EZ stiffness in flexion (p < 0.05). CONCLUSIONS: Stand-alone vertebroplasty (VP) showed some degree of support of the anterior column but was accompanied by persistent traumatic instability. Therefore, we would advocate against using VP as a stand-alone procedure in traumatic fractures. HA did not increase primary stability of short segment instrumentation. Some additional support of anterior column and changes of kinematic values of the EZ may lead one to suppose that additive augmentation may reduce the load of dorsal implants and possibly reduce the risk of implant failure. BioMed Central 2013-12-21 /pmc/articles/PMC3878408/ /pubmed/24359173 http://dx.doi.org/10.1186/1471-2474-14-360 Text en Copyright © 2013 Hartensuer et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Hartensuer, René Gehweiler, Dominic Schulze, Martin Matuszewski, Lars Raschke, Michael J Vordemvenne, Thomas Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures |
title | Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures |
title_full | Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures |
title_fullStr | Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures |
title_full_unstemmed | Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures |
title_short | Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures |
title_sort | biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878408/ https://www.ncbi.nlm.nih.gov/pubmed/24359173 http://dx.doi.org/10.1186/1471-2474-14-360 |
work_keys_str_mv | AT hartensuerrene biomechanicalevaluationofcombinedshortsegmentfixationandaugmentationofincompleteosteoporoticburstfractures AT gehweilerdominic biomechanicalevaluationofcombinedshortsegmentfixationandaugmentationofincompleteosteoporoticburstfractures AT schulzemartin biomechanicalevaluationofcombinedshortsegmentfixationandaugmentationofincompleteosteoporoticburstfractures AT matuszewskilars biomechanicalevaluationofcombinedshortsegmentfixationandaugmentationofincompleteosteoporoticburstfractures AT raschkemichaelj biomechanicalevaluationofcombinedshortsegmentfixationandaugmentationofincompleteosteoporoticburstfractures AT vordemvennethomas biomechanicalevaluationofcombinedshortsegmentfixationandaugmentationofincompleteosteoporoticburstfractures |