Cargando…
Optimal Filtering Methods to Structural Damage Estimation under Ground Excitation
This paper considers the problem of shear building damage estimation subject to earthquake ground excitation using the Kalman filtering approach. The structural damage is assumed to take the form of reduced elemental stiffness. Two damage estimation algorithms are proposed: one is the multiple model...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878783/ https://www.ncbi.nlm.nih.gov/pubmed/24453869 http://dx.doi.org/10.1155/2013/528109 |
Sumario: | This paper considers the problem of shear building damage estimation subject to earthquake ground excitation using the Kalman filtering approach. The structural damage is assumed to take the form of reduced elemental stiffness. Two damage estimation algorithms are proposed: one is the multiple model approach via the optimal two-stage Kalman estimator (OTSKE), and the other is the robust two-stage Kalman filter (RTSKF), an unbiased minimum-variance filtering approach to determine the locations and extents of the damage stiffness. A numerical example of a six-storey shear plane frame structure subject to base excitation is used to illustrate the usefulness of the proposed results. |
---|