Cargando…
Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment()
Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal su...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Masson
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878850/ https://www.ncbi.nlm.nih.gov/pubmed/23890692 http://dx.doi.org/10.1016/j.cortex.2013.06.007 |
Sumario: | Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols and the magnitude representation. However, behavioral research offers several alternative theories for developmental dyscalculia and neuro-imaging also suggests that impairments in developmental dyscalculia may be linked to disruptions of other functions of the intraparietal sulcus than the magnitude representation. Strikingly, the magnitude representation theory has never been explicitly contrasted with a range of alternatives in a systematic fashion. Here we have filled this gap by directly contrasting five alternative theories (magnitude representation, working memory, inhibition, attention and spatial processing) of developmental dyscalculia in 9–10-year-old primary school children. Participants were selected from a pool of 1004 children and took part in 16 tests and nine experiments. The dominant features of developmental dyscalculia are visuo-spatial working memory, visuo-spatial short-term memory and inhibitory function (interference suppression) impairment. We hypothesize that inhibition impairment is related to the disruption of central executive memory function. Potential problems of visuo-spatial processing and attentional function in developmental dyscalculia probably depend on short-term memory/working memory and inhibition impairments. The magnitude representation theory of developmental dyscalculia was not supported. |
---|