Cargando…
Detecting cancer clusters in a regional population with local cluster tests and Bayesian smoothing methods: a simulation study
BACKGROUND: There is a rising public and political demand for prospective cancer cluster monitoring. But there is little empirical evidence on the performance of established cluster detection tests under conditions of small and heterogeneous sample sizes and varying spatial scales, such as are the c...
Autores principales: | Lemke, Dorothea, Mattauch, Volkmar, Heidinger, Oliver, Pebesma, Edzer, Hense, Hans-Werner |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878948/ https://www.ncbi.nlm.nih.gov/pubmed/24314148 http://dx.doi.org/10.1186/1476-072X-12-54 |
Ejemplares similares
-
Comparing adaptive and fixed bandwidth-based kernel density estimates in spatial cancer epidemiology
por: Lemke, Dorothea, et al.
Publicado: (2015) -
Small-area spatio-temporal analyses of participation rates in the mammography screening program in the city of Dortmund (NW Germany)
por: Lemke, Dorothea, et al.
Publicado: (2015) -
Machine learning-based global maps of ecological variables and the challenge of assessing them
por: Meyer, Hanna, et al.
Publicado: (2022) -
Applied spatial data analysis with R
por: Bivand, Roger S, et al.
Publicado: (2013) -
Multi-objective Allocation Optimization of Soil Conservation Measures Under Data Uncertainty
por: Hildemann, Moritz, et al.
Publicado: (2023)