Cargando…
Searching for Collective Behavior in a Large Network of Sensory Neurons
Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neur...
Autores principales: | Tkačik, Gašper, Marre, Olivier, Amodei, Dario, Schneidman, Elad, Bialek, William, Berry, Michael J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879139/ https://www.ncbi.nlm.nih.gov/pubmed/24391485 http://dx.doi.org/10.1371/journal.pcbi.1003408 |
Ejemplares similares
-
Probabilistic models of individual and collective animal behavior
por: Bod’ová, Katarína, et al.
Publicado: (2018) -
Adaptation to Changes in Higher-Order Stimulus Statistics in the Salamander Retina
por: Tkačik, Gašper, et al.
Publicado: (2014) -
Inferring the function performed by a recurrent neural network
por: Chalk, Matthew, et al.
Publicado: (2021) -
Stimulus-dependent Maximum Entropy Models of Neural Population Codes
por: Granot-Atedgi, Einat, et al.
Publicado: (2013) -
Learning probabilistic neural representations with randomly connected circuits
por: Maoz, Ori, et al.
Publicado: (2020)