Cargando…
Sparsity-Regularized HMAX for Visual Recognition
About ten years ago, HMAX was proposed as a simple and biologically feasible model for object recognition, based on how the visual cortex processes information. However, the model does not encompass sparse firing, which is a hallmark of neurons at all stages of the visual pathway. The current paper...
Autores principales: | Hu, Xiaolin, Zhang, Jianwei, Li, Jianmin, Zhang, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879257/ https://www.ncbi.nlm.nih.gov/pubmed/24392078 http://dx.doi.org/10.1371/journal.pone.0081813 |
Ejemplares similares
-
Enhanced HMAX model with feedforward feature learning for multiclass categorization
por: Li, Yinlin, et al.
Publicado: (2015) -
A hierarchical model of vision (HMAX) can also recognize speech
por: Roos, Matthew J, et al.
Publicado: (2014) -
Sparsity and locally low rank regularization for MR fingerprinting
por: Lima da Cruz, Gastão, et al.
Publicado: (2019) -
Backpropagation With Sparsity Regularization for Spiking Neural Network Learning
por: Yan, Yulong, et al.
Publicado: (2022) -
Image Compressive Sensing via Hybrid Nonlocal Sparsity Regularization
por: Li, Lizhao, et al.
Publicado: (2020)