Cargando…
A mesh generation and machine learning framework for Drosophila gene expression pattern image analysis
BACKGROUND: Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulator...
Autores principales: | Zhang, Wenlu, Feng, Daming, Li, Rongjian, Chernikov, Andrey, Chrisochoides, Nikos, Osgood, Christopher, Konikoff, Charlotte, Newfeld, Stuart, Kumar, Sudhir, Ji, Shuiwang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879658/ https://www.ncbi.nlm.nih.gov/pubmed/24373308 http://dx.doi.org/10.1186/1471-2105-14-372 |
Ejemplares similares
-
Automated identification of cell-type-specific genes in the mouse brain by image computing of expression patterns
por: Li, Rongjian, et al.
Publicado: (2014) -
FlyExpress 7: An Integrated Discovery Platform To Study Coexpressed Genes Using in Situ Hybridization Images in Drosophila
por: Kumar, Sudhir, et al.
Publicado: (2017) -
Image-level and group-level models for Drosophila gene expression pattern annotation
por: Sun, Qian, et al.
Publicado: (2013) -
A bag-of-words approach for Drosophila gene expression pattern annotation
por: Ji, Shuiwang, et al.
Publicado: (2009) -
Deep convolutional neural networks for annotating gene expression patterns in the mouse brain
por: Zeng, Tao, et al.
Publicado: (2015)