Cargando…

Massively Convergent Evolution for Ribosomal Protein Gene Content in Plastid and Mitochondrial Genomes

Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent a...

Descripción completa

Detalles Bibliográficos
Autores principales: Maier, Uwe-G, Zauner, Stefan, Woehle, Christian, Bolte, Kathrin, Hempel, Franziska, Allen, John F., Martin, William F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879969/
https://www.ncbi.nlm.nih.gov/pubmed/24259312
http://dx.doi.org/10.1093/gbe/evt181
_version_ 1782298022436143104
author Maier, Uwe-G
Zauner, Stefan
Woehle, Christian
Bolte, Kathrin
Hempel, Franziska
Allen, John F.
Martin, William F.
author_facet Maier, Uwe-G
Zauner, Stefan
Woehle, Christian
Bolte, Kathrin
Hempel, Franziska
Allen, John F.
Martin, William F.
author_sort Maier, Uwe-G
collection PubMed
description Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent aspect of organelle genome evolution is partly explained by the redox regulation hypothesis, which predicts a separate plastid or mitochondrial location for genes encoding bioenergetic membrane proteins of either photosynthesis or respiration. Here we show that convergence in organelle genome evolution is far stronger than previously recognized, because the same set of genes for ribosomal proteins is independently retained by both plastid and mitochondrial genomes. A hitherto unrecognized selective pressure retains genes for the same ribosomal proteins in both organelles. On the Escherichia coli ribosome assembly map, the retained proteins are implicated in 30S and 50S ribosomal subunit assembly and initial rRNA binding. We suggest that ribosomal assembly imposes functional constraints that govern the retention of ribosomal protein coding genes in organelles. These constraints are subordinate to redox regulation for electron transport chain components, which anchor the ribosome to the organelle genome in the first place. As organelle genomes undergo reduction, the rRNAs also become smaller. Below size thresholds of approximately 1,300 nucleotides (16S rRNA) and 2,100 nucleotides (26S rRNA), all ribosomal protein coding genes are lost from organelles, while electron transport chain components remain organelle encoded as long as the organelles use redox chemistry to generate a proton motive force.
format Online
Article
Text
id pubmed-3879969
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-38799692014-01-03 Massively Convergent Evolution for Ribosomal Protein Gene Content in Plastid and Mitochondrial Genomes Maier, Uwe-G Zauner, Stefan Woehle, Christian Bolte, Kathrin Hempel, Franziska Allen, John F. Martin, William F. Genome Biol Evol Research Article Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent aspect of organelle genome evolution is partly explained by the redox regulation hypothesis, which predicts a separate plastid or mitochondrial location for genes encoding bioenergetic membrane proteins of either photosynthesis or respiration. Here we show that convergence in organelle genome evolution is far stronger than previously recognized, because the same set of genes for ribosomal proteins is independently retained by both plastid and mitochondrial genomes. A hitherto unrecognized selective pressure retains genes for the same ribosomal proteins in both organelles. On the Escherichia coli ribosome assembly map, the retained proteins are implicated in 30S and 50S ribosomal subunit assembly and initial rRNA binding. We suggest that ribosomal assembly imposes functional constraints that govern the retention of ribosomal protein coding genes in organelles. These constraints are subordinate to redox regulation for electron transport chain components, which anchor the ribosome to the organelle genome in the first place. As organelle genomes undergo reduction, the rRNAs also become smaller. Below size thresholds of approximately 1,300 nucleotides (16S rRNA) and 2,100 nucleotides (26S rRNA), all ribosomal protein coding genes are lost from organelles, while electron transport chain components remain organelle encoded as long as the organelles use redox chemistry to generate a proton motive force. Oxford University Press 2013 2013-11-19 /pmc/articles/PMC3879969/ /pubmed/24259312 http://dx.doi.org/10.1093/gbe/evt181 Text en © The Author(s) 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Maier, Uwe-G
Zauner, Stefan
Woehle, Christian
Bolte, Kathrin
Hempel, Franziska
Allen, John F.
Martin, William F.
Massively Convergent Evolution for Ribosomal Protein Gene Content in Plastid and Mitochondrial Genomes
title Massively Convergent Evolution for Ribosomal Protein Gene Content in Plastid and Mitochondrial Genomes
title_full Massively Convergent Evolution for Ribosomal Protein Gene Content in Plastid and Mitochondrial Genomes
title_fullStr Massively Convergent Evolution for Ribosomal Protein Gene Content in Plastid and Mitochondrial Genomes
title_full_unstemmed Massively Convergent Evolution for Ribosomal Protein Gene Content in Plastid and Mitochondrial Genomes
title_short Massively Convergent Evolution for Ribosomal Protein Gene Content in Plastid and Mitochondrial Genomes
title_sort massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879969/
https://www.ncbi.nlm.nih.gov/pubmed/24259312
http://dx.doi.org/10.1093/gbe/evt181
work_keys_str_mv AT maieruweg massivelyconvergentevolutionforribosomalproteingenecontentinplastidandmitochondrialgenomes
AT zaunerstefan massivelyconvergentevolutionforribosomalproteingenecontentinplastidandmitochondrialgenomes
AT woehlechristian massivelyconvergentevolutionforribosomalproteingenecontentinplastidandmitochondrialgenomes
AT boltekathrin massivelyconvergentevolutionforribosomalproteingenecontentinplastidandmitochondrialgenomes
AT hempelfranziska massivelyconvergentevolutionforribosomalproteingenecontentinplastidandmitochondrialgenomes
AT allenjohnf massivelyconvergentevolutionforribosomalproteingenecontentinplastidandmitochondrialgenomes
AT martinwilliamf massivelyconvergentevolutionforribosomalproteingenecontentinplastidandmitochondrialgenomes