Cargando…
The Complex Intron Landscape and Massive Intron Invasion in a Picoeukaryote Provides Insights into Intron Evolution
Genes in pieces and spliceosomal introns are a landmark of eukaryotes, with intron invasion usually assumed to have happened early on in evolution. Here, we analyze the intron landscape of Micromonas, a unicellular green alga in the Mamiellophyceae lineage, demonstrating the coexistence of several c...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879977/ https://www.ncbi.nlm.nih.gov/pubmed/24273312 http://dx.doi.org/10.1093/gbe/evt189 |
_version_ | 1782298024291074048 |
---|---|
author | Verhelst, Bram Van de Peer, Yves Rouzé, Pierre |
author_facet | Verhelst, Bram Van de Peer, Yves Rouzé, Pierre |
author_sort | Verhelst, Bram |
collection | PubMed |
description | Genes in pieces and spliceosomal introns are a landmark of eukaryotes, with intron invasion usually assumed to have happened early on in evolution. Here, we analyze the intron landscape of Micromonas, a unicellular green alga in the Mamiellophyceae lineage, demonstrating the coexistence of several classes of introns and the occurrence of recent massive intron invasion. This study focuses on two strains, CCMP1545 and RCC299, and their related individuals from ocean samplings, showing that they not only harbor different classes of introns depending on their location in the genome, as for other Mamiellophyceae, but also uniquely carry several classes of repeat introns. These introns, dubbed introner elements (IEs), are found at novel positions in genes and have conserved sequences, contrary to canonical introns. This IE invasion has a huge impact on the genome, doubling the number of introns in the CCMP1545 strain. We hypothesize that each IE class originated from a single ancestral IE that has been colonizing the genome after strain divergence by inserting copies of itself into genes by intron transposition, likely involving reverse splicing. Along with similar cases recently observed in other organisms, our observations in Micromonas strains shed a new light on the evolution of introns, suggesting that intron gain is more widespread than previously thought. |
format | Online Article Text |
id | pubmed-3879977 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-38799772014-01-03 The Complex Intron Landscape and Massive Intron Invasion in a Picoeukaryote Provides Insights into Intron Evolution Verhelst, Bram Van de Peer, Yves Rouzé, Pierre Genome Biol Evol Research Article Genes in pieces and spliceosomal introns are a landmark of eukaryotes, with intron invasion usually assumed to have happened early on in evolution. Here, we analyze the intron landscape of Micromonas, a unicellular green alga in the Mamiellophyceae lineage, demonstrating the coexistence of several classes of introns and the occurrence of recent massive intron invasion. This study focuses on two strains, CCMP1545 and RCC299, and their related individuals from ocean samplings, showing that they not only harbor different classes of introns depending on their location in the genome, as for other Mamiellophyceae, but also uniquely carry several classes of repeat introns. These introns, dubbed introner elements (IEs), are found at novel positions in genes and have conserved sequences, contrary to canonical introns. This IE invasion has a huge impact on the genome, doubling the number of introns in the CCMP1545 strain. We hypothesize that each IE class originated from a single ancestral IE that has been colonizing the genome after strain divergence by inserting copies of itself into genes by intron transposition, likely involving reverse splicing. Along with similar cases recently observed in other organisms, our observations in Micromonas strains shed a new light on the evolution of introns, suggesting that intron gain is more widespread than previously thought. Oxford University Press 2013 2013-11-20 /pmc/articles/PMC3879977/ /pubmed/24273312 http://dx.doi.org/10.1093/gbe/evt189 Text en © The Author(s) 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Verhelst, Bram Van de Peer, Yves Rouzé, Pierre The Complex Intron Landscape and Massive Intron Invasion in a Picoeukaryote Provides Insights into Intron Evolution |
title | The Complex Intron Landscape and Massive Intron Invasion in a Picoeukaryote Provides Insights into Intron Evolution |
title_full | The Complex Intron Landscape and Massive Intron Invasion in a Picoeukaryote Provides Insights into Intron Evolution |
title_fullStr | The Complex Intron Landscape and Massive Intron Invasion in a Picoeukaryote Provides Insights into Intron Evolution |
title_full_unstemmed | The Complex Intron Landscape and Massive Intron Invasion in a Picoeukaryote Provides Insights into Intron Evolution |
title_short | The Complex Intron Landscape and Massive Intron Invasion in a Picoeukaryote Provides Insights into Intron Evolution |
title_sort | complex intron landscape and massive intron invasion in a picoeukaryote provides insights into intron evolution |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879977/ https://www.ncbi.nlm.nih.gov/pubmed/24273312 http://dx.doi.org/10.1093/gbe/evt189 |
work_keys_str_mv | AT verhelstbram thecomplexintronlandscapeandmassiveintroninvasioninapicoeukaryoteprovidesinsightsintointronevolution AT vandepeeryves thecomplexintronlandscapeandmassiveintroninvasioninapicoeukaryoteprovidesinsightsintointronevolution AT rouzepierre thecomplexintronlandscapeandmassiveintroninvasioninapicoeukaryoteprovidesinsightsintointronevolution AT verhelstbram complexintronlandscapeandmassiveintroninvasioninapicoeukaryoteprovidesinsightsintointronevolution AT vandepeeryves complexintronlandscapeandmassiveintroninvasioninapicoeukaryoteprovidesinsightsintointronevolution AT rouzepierre complexintronlandscapeandmassiveintroninvasioninapicoeukaryoteprovidesinsightsintointronevolution |