Cargando…
Targeting of GFP-Cre to the Mouse Cyp11a1 Locus Both Drives Cre Recombinase Expression in Steroidogenic Cells and Permits Generation of Cyp11a1 Knock Out Mice
To permit conditional gene targeting of floxed alleles in steroidogenic cell-types we have generated a transgenic mouse line that expresses Cre Recombinase under the regulation of the endogenous Cytochrome P450 side chain cleavage enzyme (Cyp11a1) promoter. Mice Carrying the Cyp11a1-GC (GFP-Cre) all...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880310/ https://www.ncbi.nlm.nih.gov/pubmed/24404170 http://dx.doi.org/10.1371/journal.pone.0084541 |
Sumario: | To permit conditional gene targeting of floxed alleles in steroidogenic cell-types we have generated a transgenic mouse line that expresses Cre Recombinase under the regulation of the endogenous Cytochrome P450 side chain cleavage enzyme (Cyp11a1) promoter. Mice Carrying the Cyp11a1-GC (GFP-Cre) allele express Cre Recombinase in fetal adrenal and testis, and adrenal cortex, testicular Leydig cells (and a small proportion of Sertoli cells), theca cells of the ovary, and the hindbrain in postnatal life. Circulating testosterone concentration is unchanged in Cyp11(+/GC) males, suggesting steroidogenesis is unaffected by loss of one allele of Cyp11a1, mice are grossly normal, and Cre Recombinase functions to recombine floxed alleles of both a YFP reporter gene and the Androgen Receptor (AR) in steroidogenic cells of the testis, ovary, adrenal and hindbrain. Additionally, when bred to homozygosity (Cyp11a1(GC/GC)), knock-in of GFP-Cre to the endogenous Cyp11a1 locus results in a novel mouse model lacking endogenous Cyp11a1 (P450-SCC) function. This unique dual-purpose model has utility both for those wishing to conditionally target genes within steroidogenic cell types and for studies requiring mice lacking endogenous steroid hormone production. |
---|