Cargando…

Effect of organic matter on estuarine flocculation: a laboratory study using montmorillonite, humic acid, xanthan gum, guar gum and natural estuarine flocs

BACKGROUND: Riverine particles undergo a rapid transformation when they reach estuaries. The rapid succession of hydrodynamic and biogeochemical regimes forces the particles to flocculate, settle and enter the sediment pool. The rates and magnitudes of flocculation depend on the nature of the partic...

Descripción completa

Detalles Bibliográficos
Autores principales: Furukawa, Yoko, Reed, Allen H, Zhang, Guoping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3882290/
https://www.ncbi.nlm.nih.gov/pubmed/24386944
http://dx.doi.org/10.1186/1467-4866-15-1
_version_ 1782298340223877120
author Furukawa, Yoko
Reed, Allen H
Zhang, Guoping
author_facet Furukawa, Yoko
Reed, Allen H
Zhang, Guoping
author_sort Furukawa, Yoko
collection PubMed
description BACKGROUND: Riverine particles undergo a rapid transformation when they reach estuaries. The rapid succession of hydrodynamic and biogeochemical regimes forces the particles to flocculate, settle and enter the sediment pool. The rates and magnitudes of flocculation depend on the nature of the particles which are primarily affected by the types and quantities of organic matter (OM). Meanwhile, the OM characteristics vary widely between environments, as well as within a single environment due to seasonal climate and land use variability. We investigated the effect of the OM types and quantities through laboratory experiments using natural estuarine particles from the Mississippi Sound and Atchafalaya Bay as well as model mixtures of montmorillonite and organic molecules (i.e., biopolymers (guar/xanthan gums) and humic acid). RESULTS: Biopolymers promote flocculation but the magnitude depends on the types and quantities. Nonionic guar gum yields much larger flocs than anionic xanthan gum, while both of them exhibit a nonlinear behavior in which the flocculation is the most pronounced at the intermediate OM loading. Moreover, the effect of guar gum is independent of salinity whereas the effect of xanthan gum is pronounced at higher salinity. Meanwhile, humic acid does not affect flocculation at all salinity values tested in this study. These results are echoed in the laboratory manipulation of the natural estuarine particles. Flocculation of the humic acid-rich Mississippi Sound particles is unaffected by the OM, whereas that of biopolymer-rich Atchafalaya Bay particles is enhanced by the OM. CONCLUSIONS: Flocculation is positively influenced by the presence of biopolymers that are produced as the result of marine primary production. Meanwhile, humic acid, which is abundant in the rivers that drain the agricultural soils of Southeastern United States, has little influence on flocculation. Thus, it is expected that humic acid-poor riverine particles (e.g., Mississippi River, and Atchafalaya River, to a lesser degree) may be prone to rapid flocculation and settling in the immediate vicinity of the river mouths when mixed with biopolymer-rich coastal waters. It is also expected that humic acid-rich riverine particles (e.g., Pearl River) may resist immediate flocculation and be transported further away from the river mouth.
format Online
Article
Text
id pubmed-3882290
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-38822902014-01-08 Effect of organic matter on estuarine flocculation: a laboratory study using montmorillonite, humic acid, xanthan gum, guar gum and natural estuarine flocs Furukawa, Yoko Reed, Allen H Zhang, Guoping Geochem Trans Research Article BACKGROUND: Riverine particles undergo a rapid transformation when they reach estuaries. The rapid succession of hydrodynamic and biogeochemical regimes forces the particles to flocculate, settle and enter the sediment pool. The rates and magnitudes of flocculation depend on the nature of the particles which are primarily affected by the types and quantities of organic matter (OM). Meanwhile, the OM characteristics vary widely between environments, as well as within a single environment due to seasonal climate and land use variability. We investigated the effect of the OM types and quantities through laboratory experiments using natural estuarine particles from the Mississippi Sound and Atchafalaya Bay as well as model mixtures of montmorillonite and organic molecules (i.e., biopolymers (guar/xanthan gums) and humic acid). RESULTS: Biopolymers promote flocculation but the magnitude depends on the types and quantities. Nonionic guar gum yields much larger flocs than anionic xanthan gum, while both of them exhibit a nonlinear behavior in which the flocculation is the most pronounced at the intermediate OM loading. Moreover, the effect of guar gum is independent of salinity whereas the effect of xanthan gum is pronounced at higher salinity. Meanwhile, humic acid does not affect flocculation at all salinity values tested in this study. These results are echoed in the laboratory manipulation of the natural estuarine particles. Flocculation of the humic acid-rich Mississippi Sound particles is unaffected by the OM, whereas that of biopolymer-rich Atchafalaya Bay particles is enhanced by the OM. CONCLUSIONS: Flocculation is positively influenced by the presence of biopolymers that are produced as the result of marine primary production. Meanwhile, humic acid, which is abundant in the rivers that drain the agricultural soils of Southeastern United States, has little influence on flocculation. Thus, it is expected that humic acid-poor riverine particles (e.g., Mississippi River, and Atchafalaya River, to a lesser degree) may be prone to rapid flocculation and settling in the immediate vicinity of the river mouths when mixed with biopolymer-rich coastal waters. It is also expected that humic acid-rich riverine particles (e.g., Pearl River) may resist immediate flocculation and be transported further away from the river mouth. BioMed Central 2014-01-03 /pmc/articles/PMC3882290/ /pubmed/24386944 http://dx.doi.org/10.1186/1467-4866-15-1 Text en Copyright © 2014 Furukawa et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Furukawa, Yoko
Reed, Allen H
Zhang, Guoping
Effect of organic matter on estuarine flocculation: a laboratory study using montmorillonite, humic acid, xanthan gum, guar gum and natural estuarine flocs
title Effect of organic matter on estuarine flocculation: a laboratory study using montmorillonite, humic acid, xanthan gum, guar gum and natural estuarine flocs
title_full Effect of organic matter on estuarine flocculation: a laboratory study using montmorillonite, humic acid, xanthan gum, guar gum and natural estuarine flocs
title_fullStr Effect of organic matter on estuarine flocculation: a laboratory study using montmorillonite, humic acid, xanthan gum, guar gum and natural estuarine flocs
title_full_unstemmed Effect of organic matter on estuarine flocculation: a laboratory study using montmorillonite, humic acid, xanthan gum, guar gum and natural estuarine flocs
title_short Effect of organic matter on estuarine flocculation: a laboratory study using montmorillonite, humic acid, xanthan gum, guar gum and natural estuarine flocs
title_sort effect of organic matter on estuarine flocculation: a laboratory study using montmorillonite, humic acid, xanthan gum, guar gum and natural estuarine flocs
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3882290/
https://www.ncbi.nlm.nih.gov/pubmed/24386944
http://dx.doi.org/10.1186/1467-4866-15-1
work_keys_str_mv AT furukawayoko effectoforganicmatteronestuarineflocculationalaboratorystudyusingmontmorillonitehumicacidxanthangumguargumandnaturalestuarineflocs
AT reedallenh effectoforganicmatteronestuarineflocculationalaboratorystudyusingmontmorillonitehumicacidxanthangumguargumandnaturalestuarineflocs
AT zhangguoping effectoforganicmatteronestuarineflocculationalaboratorystudyusingmontmorillonitehumicacidxanthangumguargumandnaturalestuarineflocs