Cargando…
Self-organizing maps as an approach to exploring spatiotemporal diffusion patterns
BACKGROUND: Self-organizing maps (SOMs) have now been applied for a number of years to identify patterns in large datasets; yet, their application in the spatiotemporal domain has been lagging. Here, we demonstrate how spatialtemporal disease diffusion patterns can be analysed using SOMs and Sammon’...
Autores principales: | Augustijn, Ellen-Wien, Zurita-Milla, Raul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3882328/ https://www.ncbi.nlm.nih.gov/pubmed/24359538 http://dx.doi.org/10.1186/1476-072X-12-60 |
Ejemplares similares
-
Spatiotemporal modelling and mapping of the bubonic plague epidemic in India
por: Yu, Hwa-Lung, et al.
Publicado: (2006) -
Dynamic maps: a visual-analytic methodology for exploring spatio-temporal disease patterns
por: Castronovo, Denise A, et al.
Publicado: (2009) -
A rapid approach to investigate spatiotemporal distribution of phytohormones in rice
por: Cai, Wen-Jing, et al.
Publicado: (2016) -
Using self-organizing maps to develop ambient air quality classifications: a time series example
por: Pearce, John L, et al.
Publicado: (2014) -
Incomplete initial nutation diffusion imaging: An ultrafast, single‐scan approach for diffusion mapping
por: Ianuş, Andrada, et al.
Publicado: (2017)