Cargando…
Leloir Glycosyltransferases and Natural Product Glycosylation: Biocatalytic Synthesis of the C-Glucoside Nothofagin, a Major Antioxidant of Redbush Herbal Tea
Nothofagin is a major antioxidant of redbush herbal tea and represents a class of bioactive flavonoid-like C-glycosidic natural products. We developed an efficient enzymatic synthesis of nothofagin based on a one-pot coupled glycosyltransferase-catalyzed transformation that involves perfectly select...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
WILEY-VCH Verlag
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3883091/ https://www.ncbi.nlm.nih.gov/pubmed/24415961 http://dx.doi.org/10.1002/adsc.201300251 |
_version_ | 1782298404369465344 |
---|---|
author | Bungaruang, Linda Gutmann, Alexander Nidetzky, Bernd |
author_facet | Bungaruang, Linda Gutmann, Alexander Nidetzky, Bernd |
author_sort | Bungaruang, Linda |
collection | PubMed |
description | Nothofagin is a major antioxidant of redbush herbal tea and represents a class of bioactive flavonoid-like C-glycosidic natural products. We developed an efficient enzymatic synthesis of nothofagin based on a one-pot coupled glycosyltransferase-catalyzed transformation that involves perfectly selective 3′-C-β-d-glucosylation of naturally abundant phloretin and applies sucrose as expedient glucosyl donor. C-Glucosyltransferase from Oryza sativa (rice) was used for phloretin C-glucosylation from uridine 5′-diphosphate (UDP)-glucose, which was supplied continuously in situ through conversion of sucrose and UDP catalyzed by sucrose synthase from Glycine max (soybean). In an evaluation of thermodynamic, kinetic, and stability parameters of the coupled enzymatic reactions, poor water solubility of the phloretin acceptor substrate was revealed as a major bottleneck of conversion efficiency. Using periodic feed of phloretin controlled by reaction progress, nothofagin concentrations (45 mM; 20 g l(−1)) were obtained that vastly exceed the phloretin solubility limit (5–10 mM). The intermediate UDP-glucose was produced from catalytic amounts of UDP (1.0 mM) and was thus recycled 45 times in the process. Benchmarked against comparable glycosyltransferase-catalyzed transformations (e.g., on quercetin), the synthesis of nothofagin has achieved intensification in glycosidic product formation by up to three orders of magnitude (μM→mM range). It thus makes a strong case for the application of Leloir glycosyltransferases in biocatalytic syntheses of glycosylated natural products as fine chemicals. |
format | Online Article Text |
id | pubmed-3883091 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | WILEY-VCH Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-38830912014-01-10 Leloir Glycosyltransferases and Natural Product Glycosylation: Biocatalytic Synthesis of the C-Glucoside Nothofagin, a Major Antioxidant of Redbush Herbal Tea Bungaruang, Linda Gutmann, Alexander Nidetzky, Bernd Adv Synth Catal Communications Nothofagin is a major antioxidant of redbush herbal tea and represents a class of bioactive flavonoid-like C-glycosidic natural products. We developed an efficient enzymatic synthesis of nothofagin based on a one-pot coupled glycosyltransferase-catalyzed transformation that involves perfectly selective 3′-C-β-d-glucosylation of naturally abundant phloretin and applies sucrose as expedient glucosyl donor. C-Glucosyltransferase from Oryza sativa (rice) was used for phloretin C-glucosylation from uridine 5′-diphosphate (UDP)-glucose, which was supplied continuously in situ through conversion of sucrose and UDP catalyzed by sucrose synthase from Glycine max (soybean). In an evaluation of thermodynamic, kinetic, and stability parameters of the coupled enzymatic reactions, poor water solubility of the phloretin acceptor substrate was revealed as a major bottleneck of conversion efficiency. Using periodic feed of phloretin controlled by reaction progress, nothofagin concentrations (45 mM; 20 g l(−1)) were obtained that vastly exceed the phloretin solubility limit (5–10 mM). The intermediate UDP-glucose was produced from catalytic amounts of UDP (1.0 mM) and was thus recycled 45 times in the process. Benchmarked against comparable glycosyltransferase-catalyzed transformations (e.g., on quercetin), the synthesis of nothofagin has achieved intensification in glycosidic product formation by up to three orders of magnitude (μM→mM range). It thus makes a strong case for the application of Leloir glycosyltransferases in biocatalytic syntheses of glycosylated natural products as fine chemicals. WILEY-VCH Verlag 2013-10-11 2013-08-20 /pmc/articles/PMC3883091/ /pubmed/24415961 http://dx.doi.org/10.1002/adsc.201300251 Text en © 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Communications Bungaruang, Linda Gutmann, Alexander Nidetzky, Bernd Leloir Glycosyltransferases and Natural Product Glycosylation: Biocatalytic Synthesis of the C-Glucoside Nothofagin, a Major Antioxidant of Redbush Herbal Tea |
title | Leloir Glycosyltransferases and Natural Product Glycosylation: Biocatalytic Synthesis of the C-Glucoside Nothofagin, a Major Antioxidant of Redbush Herbal Tea |
title_full | Leloir Glycosyltransferases and Natural Product Glycosylation: Biocatalytic Synthesis of the C-Glucoside Nothofagin, a Major Antioxidant of Redbush Herbal Tea |
title_fullStr | Leloir Glycosyltransferases and Natural Product Glycosylation: Biocatalytic Synthesis of the C-Glucoside Nothofagin, a Major Antioxidant of Redbush Herbal Tea |
title_full_unstemmed | Leloir Glycosyltransferases and Natural Product Glycosylation: Biocatalytic Synthesis of the C-Glucoside Nothofagin, a Major Antioxidant of Redbush Herbal Tea |
title_short | Leloir Glycosyltransferases and Natural Product Glycosylation: Biocatalytic Synthesis of the C-Glucoside Nothofagin, a Major Antioxidant of Redbush Herbal Tea |
title_sort | leloir glycosyltransferases and natural product glycosylation: biocatalytic synthesis of the c-glucoside nothofagin, a major antioxidant of redbush herbal tea |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3883091/ https://www.ncbi.nlm.nih.gov/pubmed/24415961 http://dx.doi.org/10.1002/adsc.201300251 |
work_keys_str_mv | AT bungaruanglinda leloirglycosyltransferasesandnaturalproductglycosylationbiocatalyticsynthesisofthecglucosidenothofaginamajorantioxidantofredbushherbaltea AT gutmannalexander leloirglycosyltransferasesandnaturalproductglycosylationbiocatalyticsynthesisofthecglucosidenothofaginamajorantioxidantofredbushherbaltea AT nidetzkybernd leloirglycosyltransferasesandnaturalproductglycosylationbiocatalyticsynthesisofthecglucosidenothofaginamajorantioxidantofredbushherbaltea |