Cargando…
The versatility of multi-state models for the analysis of longitudinal data with unobservable features
Multi-state models provide a convenient statistical framework for a wide variety of medical applications characterized by multiple events and longitudinal data. We illustrate this through four examples. The potential value of the incorporation of unobserved or partially observed states is highlighte...
Autores principales: | Farewell, Vernon T., Tom, Brian D. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884139/ https://www.ncbi.nlm.nih.gov/pubmed/23225140 http://dx.doi.org/10.1007/s10985-012-9236-2 |
Ejemplares similares
-
Bias in 2-part mixed models for longitudinal semicontinuous data
por: Su, Li, et al.
Publicado: (2009) -
Multiple Imputation of Missing Composite Outcomes in Longitudinal Data
por: O’Keeffe, Aidan G., et al.
Publicado: (2016) -
A corrected formulation for marginal inference derived from two-part mixed models for longitudinal semi-continuous data
por: Tom, Brian DM, et al.
Publicado: (2013) -
Mixture distributions in multi-state modelling: Some considerations in a study of psoriatic arthritis
por: O'Keeffe, Aidan G, et al.
Publicado: (2013) -
A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks
por: Hasibi, Ramin, et al.
Publicado: (2021)