Cargando…
Comparison of Different EHG Feature Selection Methods for the Detection of Preterm Labor
Numerous types of linear and nonlinear features have been extracted from the electrohysterogram (EHG) in order to classify labor and pregnancy contractions. As a result, the number of available features is now very large. The goal of this study is to reduce the number of features by selecting only t...
Autores principales: | Alamedine, D., Khalil, M., Marque, C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884970/ https://www.ncbi.nlm.nih.gov/pubmed/24454536 http://dx.doi.org/10.1155/2013/485684 |
Ejemplares similares
-
Prediction of Preterm Delivery from Unbalanced EHG Database
por: Mohammadi Far, Somayeh, et al.
Publicado: (2022) -
Prediction of Preterm Deliveries from EHG Signals Using Machine Learning
por: Fergus, Paul, et al.
Publicado: (2013) -
Assessing Velocity and Directionality of Uterine Electrical Activity for Preterm Birth Prediction Using EHG Surface Records
por: Jager, Franc, et al.
Publicado: (2020) -
Automatic Identification of Motion Artifacts in EHG Recording for Robust Analysis of Uterine Contractions
por: Ye-Lin, Yiyao, et al.
Publicado: (2014) -
Feature Extraction and Classification of EHG between Pregnancy and Labour Group Using Hilbert-Huang Transform and Extreme Learning Machine
por: Chen, Lili, et al.
Publicado: (2017)