Cargando…

Optimized enzymatic dual functions of PaPrx protein by proton irradiation

We investigated the effects of proton irradiation on the function and structure of the Pseudomonas aeruginosa peroxiredoxin (PaPrx). Polyacrylamide gel demonstrated that PaPrx proteins exposed to proton irradiation at several doses exhibited simultaneous formation of high molecular weight (HMW) comp...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Chul-Hong, Lee, Seung Sik, Kim, Kye Ryung, Jung, Myung Hwan, Lee, Sang Yeol, Cho, Eun Ju, Singh, Sudhir, Chung, Byung Yeoup
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885114/
https://www.ncbi.nlm.nih.gov/pubmed/23753570
http://dx.doi.org/10.1093/jrr/rrt081
Descripción
Sumario:We investigated the effects of proton irradiation on the function and structure of the Pseudomonas aeruginosa peroxiredoxin (PaPrx). Polyacrylamide gel demonstrated that PaPrx proteins exposed to proton irradiation at several doses exhibited simultaneous formation of high molecular weight (HMW) complexes and fragmentation. Size-exclusion chromatography (SEC) analysis revealed that the number of fragments and very low molecular weight (LMW) structures increased as the proton irradiation dose increased. The peroxidase activity of irradiated PaPrx was preserved, and its chaperone activity was significantly increased by increasing the proton irradiation dose. The chaperone activity increased about 3–4 fold after 2.5 kGy proton irradiation, compared with that of non-irradiated PaPrx, and increased to almost the maximum activity after 10 kGy proton irradiation. We previously obtained functional switching in PaPrx proteins, by using gamma rays and electron beams as radiation sources, and found that the proteins exhibited increased chaperone activity but decreased peroxidase activity. Interestingly, in this study we newly found that proton irradiation could enhance both peroxidase and chaperone activities. Therefore, we can suggest proton irradiation as a novel protocol for conserved 2-Cys protein engineering.