Cargando…
ZODET: Software for the Identification, Analysis and Visualisation of Outlier Genes in Microarray Expression Data
SUMMARY: Complex human diseases can show significant heterogeneity between patients with the same phenotypic disorder. An outlier detection strategy was developed to identify variants at the level of gene transcription that are of potential biological and phenotypic importance. Here we describe a gr...
Autores principales: | Roden, Daniel L., Sewell, Gavin W., Lobley, Anna, Levine, Adam P., Smith, Andrew M., Segal, Anthony W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885386/ https://www.ncbi.nlm.nih.gov/pubmed/24416128 http://dx.doi.org/10.1371/journal.pone.0081123 |
Ejemplares similares
-
Stability of gene contributions and identification of outliers in multivariate analysis of microarray data
por: Baty, Florent, et al.
Publicado: (2008) -
Detecting Outlier Microarray Arrays by Correlation and Percentage of Outliers Spots
por: Yang, Song, et al.
Publicado: (2007) -
MOF: An R Function to Detect Outlier Microarray
por: Yang, Song, et al.
Publicado: (2008) -
ATLAS Open Data: software for visualisation and physics analysis
por: Lo, Ya-Feng
Publicado: (2018) -
Identification of outliers
por: Hawkins, D M
Publicado: (1980)