Cargando…
Towards Restoration of Missing Underwater Forests
Degradation of natural habitats due to urbanization is a major cause of biodiversity loss. Anthropogenic impacts can drive phase shifts from productive, complex ecosystems to less desirable, less diverse systems that provide fewer services. Macroalgae are the dominant habitat-forming organisms on te...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885527/ https://www.ncbi.nlm.nih.gov/pubmed/24416198 http://dx.doi.org/10.1371/journal.pone.0084106 |
_version_ | 1782298758302662656 |
---|---|
author | Campbell, Alexandra H. Marzinelli, Ezequiel M. Vergés, Adriana Coleman, Melinda A. Steinberg, Peter D. |
author_facet | Campbell, Alexandra H. Marzinelli, Ezequiel M. Vergés, Adriana Coleman, Melinda A. Steinberg, Peter D. |
author_sort | Campbell, Alexandra H. |
collection | PubMed |
description | Degradation of natural habitats due to urbanization is a major cause of biodiversity loss. Anthropogenic impacts can drive phase shifts from productive, complex ecosystems to less desirable, less diverse systems that provide fewer services. Macroalgae are the dominant habitat-forming organisms on temperate coastlines, providing habitat and food to entire communities. In recent decades, there has been a decline in macroalgal cover along some urbanised shorelines, leading to a shift from diverse algal forests to more simple turf algae or barren habitats. Phyllospora comosa, a major habitat forming macroalga in south-eastern Australia, has disappeared from the urban shores of Sydney. Its disappearance is coincident with heavy sewage outfall discharges along the metropolitan coast during 1970s and 1980s. Despite significant improvements in water-quality since that time, Phyllospora has not re-established. We experimentally transplanted adult Phyllospora into two rocky reefs in the Sydney metropolitan region to examine the model that Sydney is now suitable for the survival and recruitment of Phyllospora and thus assess the possibility of restoring Phyllospora back onto reefs where it was once abundant. Survival of transplanted individuals was high overall, but also spatially variable: at one site most individuals were grazed, while at the other site survival was similar to undisturbed algae and procedural controls. Transplanted algae reproduced and recruitment rates were higher than in natural populations at one experimental site, with high survival of new recruits after almost 18 months. Low supply and settlement success of propagules in the absence of adults and herbivory (in some places) emerge as three potential processes that may have been preventing natural re-establishment of this alga. Understanding of the processes and interactions that shape this system are necessary to provide ecologically sensible goals and the information needed to successfully restore these underwater forests. |
format | Online Article Text |
id | pubmed-3885527 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38855272014-01-10 Towards Restoration of Missing Underwater Forests Campbell, Alexandra H. Marzinelli, Ezequiel M. Vergés, Adriana Coleman, Melinda A. Steinberg, Peter D. PLoS One Research Article Degradation of natural habitats due to urbanization is a major cause of biodiversity loss. Anthropogenic impacts can drive phase shifts from productive, complex ecosystems to less desirable, less diverse systems that provide fewer services. Macroalgae are the dominant habitat-forming organisms on temperate coastlines, providing habitat and food to entire communities. In recent decades, there has been a decline in macroalgal cover along some urbanised shorelines, leading to a shift from diverse algal forests to more simple turf algae or barren habitats. Phyllospora comosa, a major habitat forming macroalga in south-eastern Australia, has disappeared from the urban shores of Sydney. Its disappearance is coincident with heavy sewage outfall discharges along the metropolitan coast during 1970s and 1980s. Despite significant improvements in water-quality since that time, Phyllospora has not re-established. We experimentally transplanted adult Phyllospora into two rocky reefs in the Sydney metropolitan region to examine the model that Sydney is now suitable for the survival and recruitment of Phyllospora and thus assess the possibility of restoring Phyllospora back onto reefs where it was once abundant. Survival of transplanted individuals was high overall, but also spatially variable: at one site most individuals were grazed, while at the other site survival was similar to undisturbed algae and procedural controls. Transplanted algae reproduced and recruitment rates were higher than in natural populations at one experimental site, with high survival of new recruits after almost 18 months. Low supply and settlement success of propagules in the absence of adults and herbivory (in some places) emerge as three potential processes that may have been preventing natural re-establishment of this alga. Understanding of the processes and interactions that shape this system are necessary to provide ecologically sensible goals and the information needed to successfully restore these underwater forests. Public Library of Science 2014-01-08 /pmc/articles/PMC3885527/ /pubmed/24416198 http://dx.doi.org/10.1371/journal.pone.0084106 Text en © 2014 Campbell et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Campbell, Alexandra H. Marzinelli, Ezequiel M. Vergés, Adriana Coleman, Melinda A. Steinberg, Peter D. Towards Restoration of Missing Underwater Forests |
title | Towards Restoration of Missing Underwater Forests |
title_full | Towards Restoration of Missing Underwater Forests |
title_fullStr | Towards Restoration of Missing Underwater Forests |
title_full_unstemmed | Towards Restoration of Missing Underwater Forests |
title_short | Towards Restoration of Missing Underwater Forests |
title_sort | towards restoration of missing underwater forests |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885527/ https://www.ncbi.nlm.nih.gov/pubmed/24416198 http://dx.doi.org/10.1371/journal.pone.0084106 |
work_keys_str_mv | AT campbellalexandrah towardsrestorationofmissingunderwaterforests AT marzinelliezequielm towardsrestorationofmissingunderwaterforests AT vergesadriana towardsrestorationofmissingunderwaterforests AT colemanmelindaa towardsrestorationofmissingunderwaterforests AT steinbergpeterd towardsrestorationofmissingunderwaterforests |