Cargando…
An Age-Structured Approach to Modelling Behavioural Variation Maintained by Life-History Trade-Offs
There have been numerous empirical studies on the fitness consequences of behavioural syndromes in various animal taxa; however, the ecological and evolutionary implications on a population level are still poorly understood. To better understand these implications, we develop a non-linear age-struct...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885626/ https://www.ncbi.nlm.nih.gov/pubmed/24416284 http://dx.doi.org/10.1371/journal.pone.0084774 |
Sumario: | There have been numerous empirical studies on the fitness consequences of behavioural syndromes in various animal taxa; however, the ecological and evolutionary implications on a population level are still poorly understood. To better understand these implications, we develop a non-linear age-structured mathematical model to qualitatively examine the evolutionary consequences of a heritable boldness personality trait within an animal population. We assume that this heritable boldness trait is positively correlated with boldness towards predators and intraspecific aggressiveness. This assumption leads to a growth/reproductive success versus mortality trade-off, which is thoroughly investigated and documented in the literature. Another life-history trade-off we include in the model is future versus current reproduction, which was shown by Wolf et al. [1] to be a possible mechanism for the evolution of behavioural syndromes within an animal population. The stability of the system is analysed, whereby the characteristic equation is in the form of a homogeneous Fredholm equation of the second kind which depends on both the perturbation and equilibrium solution. The system is found to be stable due to the competition between individuals of similar boldness acting as a negative feedback mechanism. Using numerical simulations we examine the qualitative features of the solution to the system. In particular, we investigate the interplay between the mutation and competition strength between two individuals with different boldness, whereby we find that an increasing competition range acts to push individuals to both extremes of the shy-bold axis, while an increasing mutation range counteracts this effect. This qualitative trait of aggregation of individuals around the shy and bold extremes is also found when examining different birth, mortality and competition functions. |
---|