Cargando…

Impact of a Single Bout of Aerobic Exercise on Regional Brain Perfusion and Activation Responses in Healthy Young Adults

PURPOSE: Despite the generally accepted view that aerobic exercise can have positive effects on brain health, few studies have measured brain responses to exercise over a short time span. The purpose of this study was to examine the impact within one hour of a single bout of exercise on brain perfus...

Descripción completa

Detalles Bibliográficos
Autores principales: MacIntosh, Bradley J., Crane, David E., Sage, Michael D., Rajab, A. Saeed, Donahue, Manus J., McIlroy, William E., Middleton, Laura E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885687/
https://www.ncbi.nlm.nih.gov/pubmed/24416356
http://dx.doi.org/10.1371/journal.pone.0085163
Descripción
Sumario:PURPOSE: Despite the generally accepted view that aerobic exercise can have positive effects on brain health, few studies have measured brain responses to exercise over a short time span. The purpose of this study was to examine the impact within one hour of a single bout of exercise on brain perfusion and neuronal activation. METHODS: Healthy adults (n = 16; age range: 20–35 yrs) were scanned using Magnetic Resonance Imaging (MRI) before and after 20 minutes of exercise at 70% of their age-predicted maximal heart rate. Pseudo-continuous arterial spin labeling (pcASL) was used to measure absolute cerebral blood flow (CBF) prior to exercise (pre) and at 10 min (post-10) and 40 min (post-40) post-exercise. Blood oxygenation level dependent (BOLD) functional MRI (fMRI) was performed pre and post-exercise to characterize activation differences related to a go/no-go reaction time task. RESULTS: Compared to pre-exercise levels, grey matter CBF was 11% (±9%) lower at post-10 (P<0.0004) and not different at post-40 (P = 0.12), while global WM CBF was increased at both time points post-exercise (P<0.0006). Regionally, the hippocampus and insula showed a decrease in perfusion in ROI-analysis at post-10 (P<0.005, FDR corrected), whereas voxel-wise analysis identified elevated perfusion in the left medial postcentral gyrus at post-40 compared to pre (p(corrected) = 0.05). BOLD activations were consistent between sessions, however, the left parietal operculum showed reduced BOLD activation after exercise. CONCLUSION: This study provides preliminary evidence of regionalized brain effects associated with a single bout of aerobic exercise. The observed acute cerebrovascular responses may provide some insight into the brain’s ability to change in relation to chronic interventions.