Cargando…
Predicting human visuomotor behaviour in a driving task
The sequential deployment of gaze to regions of interest is an integral part of human visual function. Owing to its central importance, decades of research have focused on predicting gaze locations, but there has been relatively little formal attempt to predict the temporal aspects of gaze deploymen...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886332/ https://www.ncbi.nlm.nih.gov/pubmed/24395971 http://dx.doi.org/10.1098/rstb.2013.0044 |
_version_ | 1782478885415288832 |
---|---|
author | Johnson, Leif Sullivan, Brian Hayhoe, Mary Ballard, Dana |
author_facet | Johnson, Leif Sullivan, Brian Hayhoe, Mary Ballard, Dana |
author_sort | Johnson, Leif |
collection | PubMed |
description | The sequential deployment of gaze to regions of interest is an integral part of human visual function. Owing to its central importance, decades of research have focused on predicting gaze locations, but there has been relatively little formal attempt to predict the temporal aspects of gaze deployment in natural multi-tasking situations. We approach this problem by decomposing complex visual behaviour into individual task modules that require independent sources of visual information for control, in order to model human gaze deployment on different task-relevant objects. We introduce a softmax barrier model for gaze selection that uses two key elements: a priority parameter that represents task importance per module, and noise estimates that allow modules to represent uncertainty about the state of task-relevant visual information. Comparisons with human gaze data gathered in a virtual driving environment show that the model closely approximates human performance. |
format | Online Article Text |
id | pubmed-3886332 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-38863322014-02-19 Predicting human visuomotor behaviour in a driving task Johnson, Leif Sullivan, Brian Hayhoe, Mary Ballard, Dana Philos Trans R Soc Lond B Biol Sci Articles The sequential deployment of gaze to regions of interest is an integral part of human visual function. Owing to its central importance, decades of research have focused on predicting gaze locations, but there has been relatively little formal attempt to predict the temporal aspects of gaze deployment in natural multi-tasking situations. We approach this problem by decomposing complex visual behaviour into individual task modules that require independent sources of visual information for control, in order to model human gaze deployment on different task-relevant objects. We introduce a softmax barrier model for gaze selection that uses two key elements: a priority parameter that represents task importance per module, and noise estimates that allow modules to represent uncertainty about the state of task-relevant visual information. Comparisons with human gaze data gathered in a virtual driving environment show that the model closely approximates human performance. The Royal Society 2014-02-19 /pmc/articles/PMC3886332/ /pubmed/24395971 http://dx.doi.org/10.1098/rstb.2013.0044 Text en http://creativecommons.org/licenses/by/3.0/ © 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Articles Johnson, Leif Sullivan, Brian Hayhoe, Mary Ballard, Dana Predicting human visuomotor behaviour in a driving task |
title | Predicting human visuomotor behaviour in a driving task |
title_full | Predicting human visuomotor behaviour in a driving task |
title_fullStr | Predicting human visuomotor behaviour in a driving task |
title_full_unstemmed | Predicting human visuomotor behaviour in a driving task |
title_short | Predicting human visuomotor behaviour in a driving task |
title_sort | predicting human visuomotor behaviour in a driving task |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886332/ https://www.ncbi.nlm.nih.gov/pubmed/24395971 http://dx.doi.org/10.1098/rstb.2013.0044 |
work_keys_str_mv | AT johnsonleif predictinghumanvisuomotorbehaviourinadrivingtask AT sullivanbrian predictinghumanvisuomotorbehaviourinadrivingtask AT hayhoemary predictinghumanvisuomotorbehaviourinadrivingtask AT ballarddana predictinghumanvisuomotorbehaviourinadrivingtask |