Cargando…

Regulation of Angiopoietin‐1/Tie‐2 Receptor Signaling in Endothelial Cells by Dual‐Specificity Phosphatases 1, 4, and 5

BACKGROUND: Angiopoietin‐1 (Ang‐1) promotes survival and migration of endothelial cells, in part through the activation of mitogen‐activated protein kinase (MAPK) pathways downstream of Tie‐2 receptors. Dual‐specificity phosphatases (DUSPs) dephosphorylate phosphotyrosine and phosphoserine/phosphoth...

Descripción completa

Detalles Bibliográficos
Autores principales: Echavarria, Raquel, Hussain, Sabah N. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886752/
https://www.ncbi.nlm.nih.gov/pubmed/24308939
http://dx.doi.org/10.1161/JAHA.113.000571
_version_ 1782478916611473408
author Echavarria, Raquel
Hussain, Sabah N. A.
author_facet Echavarria, Raquel
Hussain, Sabah N. A.
author_sort Echavarria, Raquel
collection PubMed
description BACKGROUND: Angiopoietin‐1 (Ang‐1) promotes survival and migration of endothelial cells, in part through the activation of mitogen‐activated protein kinase (MAPK) pathways downstream of Tie‐2 receptors. Dual‐specificity phosphatases (DUSPs) dephosphorylate phosphotyrosine and phosphoserine/phosphothreonine residues on target MAPKs. The mechanisms by which DUSPs modulate MAPK activation in Ang‐1/Tie‐2 receptor signaling are unknown in endothelial cells. METHODS AND RESULTS: Expression of various DUSPs in human umbilical vein endothelial cells exposed to Ang‐1 was measured. The functional roles of DUSPs in Ang‐1‐induced regulation of MAPK activation, endothelial cell survival, migration, differentiation, and permeability were measured using selective siRNA oligos. Ang‐1 differentially induces DUSP1, DUSP4, and DUSP5 in human umbilical vein endothelial cells through activation of the PI‐3 kinase, ERK1/2, p38, and SAPK/JNK pathways. Lack‐of‐function siRNA screening revealed that DUSP1 preferentially dephosphorylates p38 protein and is involved in Ang‐1‐induced cell migration and differentiation. DUSP4 preferentially dephosphorylates ERK1/2, p38, and SAPK/JNK proteins and, under conditions of serum deprivation, is involved in Ang‐1‐induced cell migration, several antiapoptotic effects, and differentiation. DUSP5 preferentially dephosphorylates ERK1/2 proteins and is involved in cell survival and inhibition of permeability. CONCLUSIONS: DUSP1, DUSP4, and DUSP5 differentially modulate MAPK signaling pathways downstream of Tie‐2 receptors, thus highlighting the importance of these phosphatases to Ang‐1‐induced angiogenesis.
format Online
Article
Text
id pubmed-3886752
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-38867522014-01-10 Regulation of Angiopoietin‐1/Tie‐2 Receptor Signaling in Endothelial Cells by Dual‐Specificity Phosphatases 1, 4, and 5 Echavarria, Raquel Hussain, Sabah N. A. J Am Heart Assoc Original Research BACKGROUND: Angiopoietin‐1 (Ang‐1) promotes survival and migration of endothelial cells, in part through the activation of mitogen‐activated protein kinase (MAPK) pathways downstream of Tie‐2 receptors. Dual‐specificity phosphatases (DUSPs) dephosphorylate phosphotyrosine and phosphoserine/phosphothreonine residues on target MAPKs. The mechanisms by which DUSPs modulate MAPK activation in Ang‐1/Tie‐2 receptor signaling are unknown in endothelial cells. METHODS AND RESULTS: Expression of various DUSPs in human umbilical vein endothelial cells exposed to Ang‐1 was measured. The functional roles of DUSPs in Ang‐1‐induced regulation of MAPK activation, endothelial cell survival, migration, differentiation, and permeability were measured using selective siRNA oligos. Ang‐1 differentially induces DUSP1, DUSP4, and DUSP5 in human umbilical vein endothelial cells through activation of the PI‐3 kinase, ERK1/2, p38, and SAPK/JNK pathways. Lack‐of‐function siRNA screening revealed that DUSP1 preferentially dephosphorylates p38 protein and is involved in Ang‐1‐induced cell migration and differentiation. DUSP4 preferentially dephosphorylates ERK1/2, p38, and SAPK/JNK proteins and, under conditions of serum deprivation, is involved in Ang‐1‐induced cell migration, several antiapoptotic effects, and differentiation. DUSP5 preferentially dephosphorylates ERK1/2 proteins and is involved in cell survival and inhibition of permeability. CONCLUSIONS: DUSP1, DUSP4, and DUSP5 differentially modulate MAPK signaling pathways downstream of Tie‐2 receptors, thus highlighting the importance of these phosphatases to Ang‐1‐induced angiogenesis. Blackwell Publishing Ltd 2013-12-19 /pmc/articles/PMC3886752/ /pubmed/24308939 http://dx.doi.org/10.1161/JAHA.113.000571 Text en © 2013 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/3.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Original Research
Echavarria, Raquel
Hussain, Sabah N. A.
Regulation of Angiopoietin‐1/Tie‐2 Receptor Signaling in Endothelial Cells by Dual‐Specificity Phosphatases 1, 4, and 5
title Regulation of Angiopoietin‐1/Tie‐2 Receptor Signaling in Endothelial Cells by Dual‐Specificity Phosphatases 1, 4, and 5
title_full Regulation of Angiopoietin‐1/Tie‐2 Receptor Signaling in Endothelial Cells by Dual‐Specificity Phosphatases 1, 4, and 5
title_fullStr Regulation of Angiopoietin‐1/Tie‐2 Receptor Signaling in Endothelial Cells by Dual‐Specificity Phosphatases 1, 4, and 5
title_full_unstemmed Regulation of Angiopoietin‐1/Tie‐2 Receptor Signaling in Endothelial Cells by Dual‐Specificity Phosphatases 1, 4, and 5
title_short Regulation of Angiopoietin‐1/Tie‐2 Receptor Signaling in Endothelial Cells by Dual‐Specificity Phosphatases 1, 4, and 5
title_sort regulation of angiopoietin‐1/tie‐2 receptor signaling in endothelial cells by dual‐specificity phosphatases 1, 4, and 5
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886752/
https://www.ncbi.nlm.nih.gov/pubmed/24308939
http://dx.doi.org/10.1161/JAHA.113.000571
work_keys_str_mv AT echavarriaraquel regulationofangiopoietin1tie2receptorsignalinginendothelialcellsbydualspecificityphosphatases14and5
AT hussainsabahna regulationofangiopoietin1tie2receptorsignalinginendothelialcellsbydualspecificityphosphatases14and5