Cargando…
Defining and Evaluating Classification Algorithm for High-Dimensional Data Based on Latent Topics
Automatic text categorization is one of the key techniques in information retrieval and the data mining field. The classification is usually time-consuming when the training dataset is large and high-dimensional. Many methods have been proposed to solve this problem, but few can achieve satisfactory...
Autores principales: | Luo, Le, Li, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886981/ https://www.ncbi.nlm.nih.gov/pubmed/24416136 http://dx.doi.org/10.1371/journal.pone.0082119 |
Ejemplares similares
-
Sparse representation approaches for the classification of high-dimensional biological data
por: Li, Yifeng, et al.
Publicado: (2013) -
A Comprehensive Study of Features and Algorithms for URL-Based Topic Classification
por: Weber, I, et al.
Publicado: (2011) -
Arrhythmia Classification Algorithm Based on a Two-Dimensional Image and Modified EfficientNet
por: Zhao, Cui-fang, et al.
Publicado: (2022) -
Sample size and statistical power considerations in high-dimensionality data settings: a comparative study of classification algorithms
por: Guo, Yu, et al.
Publicado: (2010) -
Plurigon: three dimensional visualization and classification of high-dimensionality data
por: Martin, Bronwen, et al.
Publicado: (2013)