Cargando…
Graph Theory Enables Drug Repurposing – How a Mathematical Model Can Drive the Discovery of Hidden Mechanisms of Action
We introduce a methodology to efficiently exploit natural-language expressed biomedical knowledge for repurposing existing drugs towards diseases for which they were not initially intended. Leveraging on developments in Computational Linguistics and Graph Theory, a methodology is defined to build a...
Autores principales: | Gramatica, Ruggero, Di Matteo, T., Giorgetti, Stefano, Barbiani, Massimo, Bevec, Dorian, Aste, Tomaso |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886994/ https://www.ncbi.nlm.nih.gov/pubmed/24416311 http://dx.doi.org/10.1371/journal.pone.0084912 |
Ejemplares similares
-
Hierarchical Information Clustering by Means of Topologically Embedded Graphs
por: Song, Won-Min, et al.
Publicado: (2012) -
Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods
por: Musmeci, Nicoló, et al.
Publicado: (2015) -
Interplay between past market correlation structure changes and future volatility outbursts
por: Musmeci, Nicoló, et al.
Publicado: (2016) -
Dependency structure and scaling properties of financial time series are related
por: Morales, Raffaello, et al.
Publicado: (2014) -
Multi-omic data integration enables discovery of hidden biological regularities
por: Ebrahim, Ali, et al.
Publicado: (2016)