Cargando…

Roles of the cellular prion protein in the regulation of cell-cell junctions and barrier function

The cellular prion protein was historically characterized owing to its misfolding in prion disease. Although its physiological role remains incompletely understood, PrP(C) has emerged as an evolutionary conserved, multifaceted protein involved in a wide-range of biological processes. PrP(C) is a GPI...

Descripción completa

Detalles Bibliográficos
Autores principales: Petit, Constance S.V., Besnier, Laura, Morel, Etienne, Rousset, Monique, Thenet, Sophie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887058/
https://www.ncbi.nlm.nih.gov/pubmed/24665391
http://dx.doi.org/10.4161/tisb.24377
Descripción
Sumario:The cellular prion protein was historically characterized owing to its misfolding in prion disease. Although its physiological role remains incompletely understood, PrP(C) has emerged as an evolutionary conserved, multifaceted protein involved in a wide-range of biological processes. PrP(C) is a GPI-anchored protein targeted to the plasma membrane, in raft microdomains, where its interaction with a repertoire of binding partners, which differ depending on cell models, mediates its functions. Among identified PrP(C) partners are cell adhesion molecules. This review will focus on the multiple implications of PrP(C) in cell adhesion processes, mainly the regulation of cell-cell junctions in epithelial and endothelial cells and the consequences on barrier properties. We will show how recent findings argue for a role of PrP(C) in the recruitment of signaling molecules, which in turn control the targeting or the stability of adhesion complexes at the plasma membrane.