Cargando…
Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam
Although fiber-optical two-photon endoscopy has been recognized as a potential high-resolution diagnostic and therapeutic procedure in vivo, its resolution is limited by the optical diffraction nature to a few micrometers due to the low numerical aperture of an endoscopic objective. On the other han...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887375/ https://www.ncbi.nlm.nih.gov/pubmed/24406685 http://dx.doi.org/10.1038/srep03627 |
Sumario: | Although fiber-optical two-photon endoscopy has been recognized as a potential high-resolution diagnostic and therapeutic procedure in vivo, its resolution is limited by the optical diffraction nature to a few micrometers due to the low numerical aperture of an endoscopic objective. On the other hand, stimulated emission depletion (STED) achieved by a circularly-polarized vortex beam has been used to break the diffraction-limited resolution barrier in a bulky microscope. It has been a challenge to apply the STED principle to a fiber-optical two-photon endoscope as a circular polarization state cannot be maintained due to the birefringence of a fiber. Here, we demonstrate the first fiber-optical STED two-photon endoscope using an azimuthally-polarized beam directly generated from a double-clad fiber. As such, the diffraction-limited resolution barrier of fiber-optical two-photon endoscopy can be broken by a factor of three. Our new accomplishment has paved a robust way for high-resolution in vivo biomedical studies. |
---|